
NAVAL POSTGRADUATE SCHOOL
Monterey, California

r,~ 0 TI FILE COPY

CD
Lfl

0 1
-"AUG 2 4- 1990

THESIS
AN OPTIMAL STATIC SCHEDULING ALGORITHM

FOR HARD REAL-TIME SYSTEMS
SPECIFIED IN A PROTOTYPING LANGUAGE

by

Julian Jaime Cervantes

December, 1989

Thesis Advisor: Luqi

Approved for public release; distribution is unlimited.

.. 3 9

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OMB No 07040188

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

2b DECLASSIFICATION /DOWNGRADING SCHEDULE Approved for public release; distribution
is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORiNG ORGANIZATION REPORT NuMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a, NAME OF MONITORING ORGAN.ZATiON

(If applicable)

Naval Postgraduate School
6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

8a NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCJREMENT IJSTRUMENT DENTIFICA710J NLJMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGPAM PROjECT TASK WORK UNIT
ELEMENT NO NO NO jACCESSION NO

11 TITLE (Include Security Classification)

An Optimal Static Scheduling Algorithm for Hard Real-Time Systems Specified in
Prototyping Language

12. PERSONAL AUTHOR(S)

Julian Jaime Cervantes
13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year,MonthDay) 15 PACE CO ,%

Master Thesis FROM TO 1989 December 1 116
16 SUPPLEMENTARY NOTATiON The views expressed in this thesis are those of the author and do
not reflect the official policy or position of the Department of Defense or the U.S.
Government.
17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify b) block number)

FIELD GROUP SUB-GROUP Computer Aided Prototyping System (CAPS)

A BSTRACT (Continue on reverse if necessary and identify by block number)

e Computer Aided Prototyping System (CAPS) and the Prototype System Description
Language (PSDL) are tools that have been designed to aid in rapid prototyping. Within
the framework of CAPS the Execution Support System (ESS) controls the execution of the
prototype. The Static Scheduler is the cnponent of the ESS which extracts and realizes
critical timing constraints and precedence constraints for operators.
The construction of a Static Scheduling Algorithm provides the foundation for handling
hard real-time constraints during the execution of PSDL. The proposed work will be based
on the theories of optimal sequencing through modular decomposition, as well as
enumeration techniques. An optimal algorithm will provide the analyst with a definitive
method for a determining whether a given design can meet its hard real-time requirements.

20 DISTRIBUTIC AVAILAB;LITY OF ABSTRACT 2 ABSTRACT SECURITY CLASI;,CA TIONI UNCLAS
€ D/UNLIMITED 0 SAME AS RPT 0 DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELFPHtO'N.Indude Area Code) 22. O,E.3 BO

Lucia Luqi 408 646-2735

DD Form 1473, JUN 86 Previous editions are obsolete SECUIrTY CLASSOi CA' Of, P" T-,- Ac-E

SIN 0102-LF-014-6603 Unclassified
i

Approved for public release; distribution is unlimited.

An Optimal Static Scheduling Algorithm

for Hard Real-Time Systems

Specified in a Prototyping Language

by

Julian Jaime Cervantes

Capitao Engenheiro, Forga A~rea Brasileira

B.S., Instituto Tecnologico de Aeron~utica, 1978

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

December 1989

Author: -

Julian Jaime Cervantes,

Approved by: L t
uqi, Thesis Advisor

Valdis Berzins" Second Reader

Uno R. Kodres, Academic Associate

p of cience

Robert B. McGhee, Chairman

Department of Computer Science

ii

ABSTRACT

The Computer Aided Prototyping System (CAPS) and the Prototype System

Description Language (PSDL) are tools that have been designed to aid in rapid

prototyping. Within the framework of CAPS the Execution Support System (ESS)

controls the execution of the prototype. The Static Scheduler is the component

of the ESS which extracts and realizes critical timing constraints and precedence

constraints for operators.

The construction of a Static Scheduling Algorithm provides the foundation for

handling hard real-time constraints during the execution of PSDL. The proposed

work will be based on the theories of opt.".al sequencing through modular

decomposition, as well as enumeration techniques. An optimal algorithm will

provide the analyst with a definitive method for deternining whether a given

design can meet its hard real-time requirements.

Accession For

NTIS Gl"-A&I
DTIC TAB
Un11 nnounced EJ
Juztificatio

Distribution/

Avail, 1lity Codes

;Ai,i and/or

Dist Spocial

iii

TABLE OF CONTENTS

I. INTRODUCTION .1

A. BACKGROUND 1

B. TRADITIONAL SOFTWARE CYCLE AND RAPID PROTOTYPING 2

1. Traditional Software Cycle 2

2. Rapid Prototyping 4

C. CAPS AND PSDL OVERVIEW 7

1. CAPS 7

2. PSDL 9

D. ORGANIZATION 11

II. SURVEY OF PREVIOUS WORK ON HARD REAL-TIME SCHEDULING12

A. SOME DEFINITIONS ABOUT SCHEDULING ALGORITHMS12

B. SOME BASIC TASK DEFINITIONS 13

C. DESCRIPTION OF SOME SCHEDULING ALGORITHMS 13

1. The Fixed Priorities Scheduling Algorithm14

2. The Harmonic Block with Precedence Constraints Scheduling

Algorithm 14

3. The Earliest Start Scheduling Algorithm 18

4. The Branch and Bound Scheduling Algorithm20

5. The Minimize Maximum Tardiness with Earliest Start Scheduling

Algorithm 23

6. The Deadline and Criticalness Scheduling Algorithm26

7. The Rate-Monotonic Priority Scheduling Algorithm 28

iv

8. The Priority Ceiling Protocol Scheduling Algorithm30

9. The Bandwidth Preserving Scheduling Algorithms32

a. Priority Exchange Algorithm32

b. Deferrable Server Algorithm33

10. The Time-Driven Systems using Augmented Petri Nets Model . 33

11. The Sequencing via Modular Decomposition 42

D. SUMMARY44

III. DESIGN OF AN OPTIMAL STATIC SCHEDULING ALGORITHM46

A. NON-POLYNOMIAL PROBLEMS 46

B. OPERATORS AND TASKS 48

C. GRAPH OF CONSTRAINTS53

1. Length of the Harmonic Block 55

a. Algorithm for GCD 55

b. Algorithm for LCM 56

2. Tasks of the Graph of Constraints56

a. Algorithm for Number of Tasks 56

3. Precedence Constraints of the Tasks57

a. Algorithm for Generate Chains of Tasks58

b. Algorithm for Interconnecting Chains of Tasks 59

4. Ordering the Tasks of the Graph of Constraints 61

a. Algorithm to Reorder the Tasks 61

5. Description of the Steps to Obtain the Graphi of Constraints63

C. COST FUNCTIONS 64

1. Preliminary Definitions65

2. Applicable Cost Functions66

3. Selected Cost Function 72

V

D. THE ENUMERATION TECHNIQUES OPTIMAL SCHEDULING ALGORITHM . . . 73

1. Explicit Enumeration 74

a. Ancestors and Descendants 75

b. Maximum Lexicographic Order Legal Sequence77

2. Implicit Enumeration 79

3. Legal Sequences 79

a. Algorithm for Implicit Enumeration79

b. Algorithm for Explicit Enumeration80

4. Evaluation of the Cost Function80

a. Algorithm for Evaluate the Maximum Total Tardiness . . .81

5. Summary of the Optimal Enumeration Scheduling Algorithm . .81

E. THE JOB MODULAR DECOMPOSITION ALGORITHM 83

1. Tree Decomposition of the Graph of Constraints into Job

Modules83

a. Additional Concepts 84

b. Job Modular Decomposition Basis85

c. Algorithms Available for the Job Modular Decomposition .86

2. Evaluation of the Possible Phases of the Operators 89

3. Presequencing the Job Modules90

F. SUMMARY 90

IV. ANALYSIS AND COMMENTS 92

A. EVALUATION OF THE ALGORITHMS 92

B. POSSIBLE CAPS MODIFICATIONS96

C. SOME NEW CONCEPTS99

V. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK100

vi

LIST OF REFERENCES...................................102

INITIAL DISTRIBUTION LIST...................................106

vii

LIST OF FIGURES

Figure 1 Traditional Software Life Cycle 3

Figure 2 Prototyping Life Cycle 5

Figure 3 Prototype Development Using the Computer-Aided System 6

Figure 4 Major Software Tools of CAPS 8

Figure 5 The Computer Aided Prototyping System 9

Figure 6 The Execution Support System 10

Figure 7 1" Level DFD15

Figure 8 Scheduling with Earliest Start Time19

Figure 9 Scheduling with Branch and Bound21

Figure 10 Schedule of Two Tasks 29

Figure 11 A Petri Net35

Figure 12 A Driven Cycle for a Time-Driven System37

Figuze 13 An Asynchronous Time,-Driven System. 39

Figure 14 A Synchronous Time-Driven System40

Figure 15 A General Shared Resource41

Figure 16 Linear vs. Network Decomposition50

Figure 17 Timing Constraints for a Periodic Operator51

Figure 18 Timing Constraints for a Sporadic Operator52

Figure 19 Possible Phases of an Operator 53

Figure 20 Precedence Constraints 59

Figure 21 Chains of Tasks61

Figure 22 Graph of Constraints 63

Figure 23 Graph of Constraints Ordered64

Figure 24 1" Level DFD Graph of Constraints 65

Figure 25 Sucessors and Predecessors 76

Figure 26 Ancestors and Descendants78

viii

Figure 27 1" Level DFD Explicit Enumeration. 82

Figure 28 1'" Level DE'D Implicit Enumeration. 82

Figure 29 Implication Classes. 85

Figure 30 Job Modular Decomposition. 87

Figure 34 Influence of the Period on the Graph of Constraints

and the LCM 94

ix

I. INTRODUCTION

A. BACKGROUND

Many new and sophisticated real-time applications are currently being

contemplated by governments and industries around the world. Hard real-time

systems are defined as those systems in which the correctness of the system

depends not only on the logical result of computation, but also on the time at

which the results are produced. Examples of this type of real-time systems are

command and control systems, process control systems, flight control systems,

the space shuttle avionics system, future systems such as SDI, and large command

and control systems. Most of the hard real-time computer systems are special-

purpose and complex, require a high degree of fault tolerance, and are typically

embedded in a larger system.(Ref. Luq89 : pp. 417-424]

Also, real-time systems have substantial amounts of knowledge concerning the

characteristics of the application and the environment built into the system.

A majority of today's systems assume that much of this knowledge is available

a priori and, hence, are based on static designs.(Ref. SRC87 : pp. 1-4]

Hard real-time systems are characterized by the fact that severe consequences

will result if the timing as well logical correctness properties of the system

are not satisfied. Typically a hard real-time system consists of a controlling

system and a controlled system, thus the controlled system can be viewed as the

environment with which the computer interacts.(Ref. Kic88 : p. 15]

In most of these systems, activities that have to occur in a timely fashion

coexist with those that are not time-critical. Let us denote both activities as

tasks and a task with a timing requirement as a critical task. Ideally, the

computer should execute critical tasks so that each task will meet its timing

requirement, whereas it should execute the non-critical tasks so that the

average response time of these tasks is minimized.[Ref. SRC87 : pp. 1-4]

Timing constraints for tasks can be arbitrarily complicated, but the most

common timing constraints for tasks are either periodic or sporadic. A sporadic

task has a deadline by which it must finish or start, or it may have a

constraint on both start and finish times. In the case of a periodic task

period might mean "once per period T". The need to meet the requirements of

individual critical tasks is one issue that makes r-ue problem of designing a

hard real-time system a difficult problem. In addition to timing constraints,

a task is usually 3ubject to other types of constraints such as precedence

relationships.(Ref. Kic88 : pp. 80-84]

In summary, hard real-time systems differ from traditional systems in that

deadlines or other explicit timing constraints are attached to tasks, the

systems are in a position to make compromises, and faults, including timing

faults, may cause catastrophic consequences. This implies that, unlike many

systems where there is a separation between correctness and performance, in a

hard real-time system correctness and performance are very tightly interrelated.

Thus hard real-time systems solve the problem of missing deadlines in ways

specific to the requirements of the target application.(Ref. LG88 : p. 1]

B. TRADITIONAL SOFTWARE CYCLE AND RAPID PROTOTYPING

1. Traditional Software Cycle

The traditional software cycle and rapid prototyping are two of the more

common design methodologies used to maintain a scientific approach to software

engineering.

The traditional software cycle is based on the waterfall life cycle, which

incorporates individual development stages. Figure 1, below, shows a graphic

representation of this approach.

Requirements Analysis

Functional Specifications

F Architectural Design

Module Design

Implementation

Testing

FEvaluation and Repair

Figure 1 Traditional Software Life Cycle

These stages include requirements analysis, functional specifications,

architectural design, module design, implementation, testing,and evolution.

Requirements analysis establishes the purpose of the system in development and

defines the external interfaces as well the environment within which the system

will operate. The functional analysis defines a model of the proposed system,

but this model just contains those aspects of the system that are visible to the

user. The architectural design generates a high-level model of the system, during

this phase the system is partitioned into modules, each of these modules try to

hide one specific function, state machine or abstract data type. During the

3

module design phase the algorithm and data structures of each module are defined,

in order to realize the behavior specified in the architectural design. The

implementation stage is just the coding, in some programming language, of the

decisions made durin, Ln the module design phase. Testing is the phase when

inconsistencies with expected .erformance are detected. The evolution (or repair)

stage is when new features or capabilities are added onto the system in order

to meet the requirements of the user, or to repair faults. Depending of the full

impact of these faults the overall reliability and accuracy of the system could

be in question. The traditional software life cycle yields an executable system

only after too much time and money are spent.[Ref. Luq88 : pp. 1-81

2. Rapid Prototyping

The rapid prototyping methodology is an alternative for the traditional

software life cycle, which is proving to be more efficient in design of large

hard real-time systems. The goal of rapid prototyping is to develop an executable

model of the intended system early in the development process. In general, the

prototype is only a partial representation of the intended system and includes

only the system's most critical aspects. The code of a prototype usually cannot

be used as the final implementation because it may not realize all the aspects

of the intended system. Figure 2, on page 5, graphically describes this

methodology as a typical feedback loop.

Rapid prototyping initially establishes an interactive process between the

user and the designer to concurrently define specifications and requirements for

the critical aspects of the system under development. The prototype must satisfy

its requirements, and be easy to read and analyze. During demonstrations of the

prototype, the user validates the prototype's actual performance. This process

continues until the user determines that the prototype meets the time critical

aspects of the system under development.[(Ref. LK88 : pp. 66-72]

4

Determine Requirements Construct

Requirements Prototype

F Required Executable

Modifications Prototype

r Performance Demonstrate
Validate Dmostat

? i t Prototype

Y Requirements

System

Implementation

Figure 2 Prototyping Life Cycle

To date, rapid prototyping has been done manually without the aid of

software tools. Each step in the rapid prototyping methodology, though faster

than the traditional life cycle as discussed above, still requires a good deal

of time and effort.(Ref. O'He88 : p. 4]

A computer-aided rapid prototyping approach will provide the software

designer with a powerful tool, designed specially for development of hard real-

time or embedded systems. Prototyping the system generates a skeletal design

framework which may serve as the initial design structure of the production

version. The early prototypes provide a traceable link between requirements,

design, implementation and maintenance. Figure 3, on page 6, illustrates the

major steps in computer-aided prototyping.[Ref. LK88 : pp. 66-723

5

bpecniicaLlonsi
S Rewrite
Specifications

Foraulate
Query

Search
Components

None

DecomposeYe
cmHoon

.1r Specify Resolve
I ef Hand-Code /Choose

U Components

I Prototyp]ng Retrieve
System component

Compose

Components

Implementation
Figure 3 Prototype Deveiopcent Using the Computel-Aided SysLet

6

The Computer Aided Prototyping System (CAPS) is being developed to improve

software technology, and will aid the software designer in the requirements

analysis of large hard real-time systems by using specifications and reusable

software components to automate the rapid prototyping process-

The Prototype System Description Language (PSDL) is an executable high

level specification language that directly supports CAPS. PSDL is made executable

by the execution support system element of CAPS. CAPS and PSDLwill be described

in detail in the next jection.[(Ref. LV88 : p. 25-36]

C. CAPS AND PSDL OVERVIEW

1. CAPS

The computer aided prototyping system CAPS consists of three primary

subsystems: a user interface, an execution support system, and a prototyping

software base. The user interface contributes to effective and efficient

construction or modification of prototypes by providing a graphical editor, a

syntax directed editor, a browser, an expert system for communicating with end

users, and a debugger. The editor enables convenient entry and management of

PSDL descriptions and the browser allows the designer to interact with the

software database while retrieving and examining prototype components. The expert

system provides a paraphrasing capability generating English text from PSDL

descriptions. The debugger allows the designer to interact with the execution

support system.

The execution support system consists of a translator which generates code

to link reusable components together, a static scheduler which allocates time

slots for prototype components prior to their execution, and a dynamic scheduler

which allocates free time slots to non-time critical components as execution

proceeds.

7

The prototyping database consists of a design database, reusable software

base, software design management system and a rewrite system. The prototyping

database keeps track of designs and stores reusable prototype components together

with their specifications. Its design management system provides version control

and maintains design histories, and a retrieval subsystem translates PSDL

specifications into a normal form to ease retrieval. Program construction is

speeded up by taking advantage of reusable software components drawn from a

software base. The aspects of program construction that benefit from automated

assistance are retrievals from the software base, generation of code for

interconnecting available modules, and static task scheduling. Figure 4, below,

graphically describes the major software tools of CAPS, and the Figure 5 on page

9 describes the architecture of CAPS. (Ref. Jan88 pp. 4-5, and Ref. Luq88

pp. 14-20]

CAPS

UsrSoftware ExecutionUser

Interface Database Support
System System

Figure 4 Major Software Tools of CAPS

8

User Interface j

I Prototype System

-Description Language

Rewrite System]
Software Design Execution Support

lanagment System System

Prototype

Database

Software Base

Figure 5 The Computer Aided Prototyping System

2. PSDL

The Prototype System Description Language PSDL was designed to serve as

an executable prototyping language working at a specification or a design level.

PSDL is a language for describing prototypes of large software systems with hard

real-time constraints on different levels of abstraction.

Such systems are modeled in PSDL as networks of operators communicating

via data streams, using augmented data flow diagrams. The operators in an

augmented data flow diagram are supplemented with timing constraints and non-

procedural control constraints. The data stream can carry data values of an

abstract data type or tokens representing exception conditions. Each type or

operator is either composite or atomic. Composite operators are implemented by

decomposing them into networks of more primitive operators using PSDL. Atomic

9

operators are realized by retrieving reusable components from the software base

which meets the specifications of operators and are implemented in Ada. The

language is easy to use because provides a familiar graphical notation for the

underlying computational model. A specification which augments a dataflow graph

provides the information to effectively retrieve reusable software components

and adapt them to the specific application context.

Computer-aided support of PSDL is provided by an integrated prototyping

environment assisting the designer in interactively constructing a PSDL design

and automatically links it to reusable components in the software base. The PSDL

Execution Support System (ESS) contains a translator, static scheduler, and

dynamic scheduler. Figure 6, below, illustrates the ESS subsystems external

interfaces to others components of CAPS and the interactions within the ESS

itself.[Ref. O'He88 : pp. 7-10]

Fo u p p r C AS
1ser

Code Interface

TranslatorSceu r
ScheduleriAea

Executabe

Sogure e Eeuin SupotSse

10

D. ORGANIZATION

Chapter II provides a survey of the state-of-the-art in hard real-time

scheduling algorithms. Chapter III addresses the design of an optimal scheduling

algorithm for handling graph-based hard real-time specifications. The bases for

the development of such algorithms are the theories of optimal sequencing through

modular decomposition and enumeration techniques. Chapter IV presents the

analysis of the optimal scheduling algorithm and establishes its correctness and

optimality properties and assess its impacts on the rapid prototyping of hard

real-time systems. Chapter V contains the conclusions and recommendations for

future work.

11

II. SURVEY OF PREVIOUS WORK ON HARD REAL-TIME SCHEDULING

The function of a scheduling algorithm is to determine, for a given set of

tasks, whether a schedule (the sequence and the time periods) for executing the

tasks exists such that the timing, precedence and resource constraints of the

tasks are satisfied, and to calculate such a schedule if one exists.

A. SOME DEFINITIONS ABOUT SCHEDULING ALGORITHMS

Task scheduling in hard real-time system6 can be static or dynamic. In static

systems, a scheduling algorithm determines the schedule for a set of tasks off-

line. In dynamic systems, because not all the characteristics of tasks are known

a priori, a dynamic scheduling algorithm progressively determines the schedule

for tasks on-line. A scheduling algorithm is said to guarantee a newly arriving

task if the algorithm can find a schedule for all the previously guaranteed tasks

and the new task such that each task finishes by its deadline. A major metric

for dynamic scheduling algorithms is the guarantee ratio, which is the total

number of tasks guaranteed versus the total number of tasks that arrive.[Ref.

BSR88 : pp. 152-160)

A static scheduling algorithm is said to be optimal if, for any set of tasks,

it always produces a schedule which satisfies the constraints of the tasks

whenever any other algorithm can do so. A dynamic scheduling algorithm is said

to be optimal if it always produces a feasible schedule whenever a static

scheduling algorithm with complete prior knowledge of all the possible tasks can

do so.

Static approaches have low run-cost, but they are inflexible and cannot adapt

to a changing environment or to an environment ;,hose behavior is not completely

predictable. When new tasks are added to a static system, the schedule for the

entire system must be recalculated, which may be expensive in terms of time and

12

money. In contrast, dynamic approaches involve higher run-time costs, but because

the way they are designed, they are flexible and can more easily adapt to changes

in the enviro.nment.

In hard real-time systems, tasks are also distinguished as preemptable and

nonpreemptable. A task is preemptable if its execution can be interrupted by

other tasks and resumed afterwards. A task is nonpreemptable if it must run to

completion once it starts.

B. SOME BASIC TASK DEFINITIONS

A task is a software module that can be invoked to perform a particular

function. A task is the scheduling entity in a system. In a hard real-time

system, a task is characterized by its timing constraints, precedence

constraints, and resource requirements. This thesis assumes that the resource

requirements are always met.

The precedence constraints among a set of tasks specify the relations between

the tasks. A task T, is said to precede task T, if T, must finish before T,

begins. Interrelated tasks communicate with each other in real-time to achieve

synchronization as well to exchange data. The precedence graph of a set of tasks

is an acyclic graph.

C. DESCRIPTION OF SOME SCHEDULING ALGORITHMS

In this section we survey both static and dynamic scheduling algorithms for

hard real-time systems. However, because of the enormous amount of literature

which deals with hard real-time scheduling problems, it is imp.ssible to

discuss all the material. Therefore, we only present an overview of previous work

scheduling algorithms approaches and discuss their characteristics.

0

13

1. The Fixed Priorities Scheduling Algorithm

In many conventional hard real-time systems, tasks are assigned with fixed

priorities to reflect critical deadlines, and tasks are executed in an order

determined by the priorities. During the testing period, the priorities are

(usually manually) adjusted until the system implementer is convinced that the

system works. Such approach can only work for relatively simple systems, because

it is hard to determine a good priority assignment for a system with a large

number of tasks by such a test-and-adjust method. Fixed priorities is a type of

static scheduling. Once the priorities are fixed on a system is very hard and

expensive to modify the priority assignment.(Ref. LTJ85]

2. The Harmonic Block with Precedence Constraints Scheduling Algorithm

This scheduling algorithm is being used by the CAPS. A general description

of the implementation is furnished above, and a data flow diagram is given in

Figure 7, on page 15.

The first component of the DFD, "ReadPSDL", reads and processes the PSDL

prototype program. The output of this step is a file containing operator

identifiers, timing information and link statements.

The second component is the "Pre-ProcessFile". The file generated in the

first step is analyzed and the data is divided into three separate files based

on its destination or additional processing required. The Non-Crits contains the

data of all noncritical operators for use by the dynamic scheduler. The Operator

file contains all critical operators identifiers and their associated timing

constraints. The Links file contains the link statements which syntactically

describe the PSDL implementation graphs. During this step some basic validity

checks on the timing constraints are performed, if any of the checks fails an

exception is raised and an appropriate error message is submitted to the user.

14

SORT-.

TOPOLOGICAL

PRECEDENCE
LINKS
ME LIST

PSDL
SOURCE TEXT

PD THEJILE OPERATORS

HARISO-CC
BLOCK

OPERATOR
FILE MZGTHf

STATIC

BUILD- SCHEDULE

I XARKORIC.

NOR'CRIT5 I3LOCX

Figure 7 1' Level DFD

The "SortTopological" component performs a topological sort of the link

statements contained in the Links file. The requirements for a topological sort

imply that the statements being sorted have natural continuity and connectedness.

These properties define the execution precedence of the time critical operators

regardless of whether the graphs are linear or acyclic. The output from the

topological sort is a precedence list of critical operators stipulating the exact

order in which they must be executed. A linear graph will produce one precedence

list while an acyclic graph can produce two or more different precedence lists.

The second output of the "Pre-ProcessFile", the Operator file, is the

input to the "BuildHarmonicBlocks". An harmonic block is defined as a set of

periodic operators where the periods of all its component operators are exact

multiples of a calculated base period. Each harmonic block is treated as an

independent scheduling problem. When multiprocessors are utilized then one

15

processor for each harmonic block is necessary. The implementation being

developed utilizes a single processor, therefore the final static schedule

assumes that only one harmonic block is created. All the operators must be

periodic, then all the sporadic operators are converted to their periodic

equivalents. The periodicity helps insure that execution is completed between

the beginning of a period and its deadline, which defaults to the end of the

period.

In order to convert a sporadic operator into its equivalent periodic

operator the following parameters of the sporadic operator must be known

" Maximum Execution Time (MET).

" Minimum Calling Period (MCP).

" Maximum Response Time (MRT).

Some rules must be obeyed by these parameters in order to cbtain an

equivalent periodic operator, the rules are the following:

" MET < MRT. This rules insures that (MRT - MET) produces a positive
value.

" MCP < MRT. This condition is necessary, but not sufficient, to guarantee
that an operator can fire at least once before a response is expected.

" MET < MCP. This restriction insures that the period calculated will
conform to a single processor environment.

The periodic equivalent is then calculated as P = min (MCP, MRT - MET).

The value of P must be greater than MET in order for the operator to complete

execution within the calculated period.

After all the operators are in periodic form, they are sorted in ascending

order based on the period values. A second preliminary step is to calculate the

base block and its period for the sorted sequence of operators. The base period

is defined as the greatest common divisor (GCD) of all the operators in one

sequence that will be scheduled together.

16

The last preliminary step is to evaluate the length of time for the

harmonic block. The actual harmonic block length is the least common multiple

(LCM) of all the operators' period contained in the block. The harmonic block

and its length are an integral part of the static schedule. This block represents

an empty timeframe within which the operators will be allocated time slots for

execution. The allocation of time slots within the harmonic block is Lepeated

indefinitely.

The outputs of the Sorttopological" and the "BuildHarmonicBlocks" are

used by the "Schedule-Operators" in order to create a static schedule for the

time critical operators. The resulting static schedule is a linear table giving

the exact execution start time for each critical operator and the reserved MET

within which each operat-.. completes its execution.

This linear table is evaluated in two iterative steps. In the first step

an initial execution time interval is allocated for each operator based on the

equation INTERVAL = (current time, current time + MET). Next the process

creates a firing interval for each operator during which the second iterative

step must schedule the operator. The firing interval stipulates the lower and

upper bound for the next possible start time for an operator based on its period.

The second step, initially, uses the lower bound of each firing interval when

it schedules operators during subsequent iterations. The sequence of operators

is allocated time slots according to the earliest lower bound first. Before an

operator is allocated a time slot, this step verifies that:

. (current time + MET) =< harmonic block length.

This condition is applicable to every operator scheduled in that harmonic

block. This step also calculates new firing intervals for each operator

scheduled. Once all the operators are correctly scheduled within an entire

17

harmonic block a static schedule is available. All subsequent harmonic blocks

are copies of the first.

A theoretical development and implementation guideline of this algorithm

is available in [Ref. O'He88] and [Ref. Jan88].

The actual implementation of this algorithm and the analysis of its

performance is described in [Ref. Mar88].

3. The Earliest Start Scheduling Algorithm

This algorithm considers the scheduling of n tasks on a single processor,

additional constraints that each task has an earliest start time (a,) . Each task

becomes available for processing at time a, must be completed by time b, and

requires d, time units for processing. Task splitting (preemptable tasks) is

allowed. Under this assumption it is only required to complete d', units of

processing between a, and b,.

Consider the rectangular matrix that has a column for each job and a line

for each unit of time available. There are max,(b,) lines and n columns. In this

matrix it is necessary to distinguish between admissible and inadmissible cells.

For job i the cell (i,j) is admissible if a,<j=<b, and inadmissible otherwise.

The admissible cells correspond to the time where the task may be performed.

Figure 8, on page 19, shows an example.

Associated with each row is an availability of one unit of time, and with

each column a requirement of d,. If the task i is being processed at time j, a

1 is placed in the admissible cell. This problem is equivalent to that of finding

a set of l's placed in admissible - 'I.s such that columns sums satisfy the

requirements d, and each line contain- . most one single 1.(Ref. BFR71 : pp.

511-514]

18

1 2 3 4

X -

i 1 2 3 4 21

a1 2 0 3 1 3 1 1

S 4 5 4 I
PE~I~D ~AVAI6ABILITIESPEIOD / , 16 XX I

2 1 2 2

DEHANDS

Figure 8 Earliest Start Time Scheduling

This type of algorithm does not account for precedence constraints. In

order to include the precedence constraints in this algorithm it is necessary

to do some modifications. The modification can utilize concepts like the harmonic

block and the restriction that a job j, that is preceded by a job i, is

admissible only after the constraint a, is satisfied.

The (Ref. BFR71 pp. 518-519] presents an implementation in FORTRAN to

solve the case without precedence constraints. This type of algorithm is not

applicable to our case because it assumes that all the tasks are preemptable.

This algorithm assigns a time slot to the newest ready task to be executed,

if this allocation will imply in to miss the deadline of some task already

started then the algorithm will assign the time slot to the task with the nearest

deadline. If there is no new task ready then the next time slot is assigned to

the task with the nearest deadline.

19

This algorithm is bounded by O(n) in time, and does not guarantee that a

solution (assuming that at least one is available for the problem) is found.

4. The Branch and Bound Scheduling Algorithm

This section covers the scheduling of n tasks on a single pirocessor under

the assumption that job splitting is not allowed. The notation used in this

section is the same as the section II.C.3. The main ideia is to enumerate

implicitly all the possible orderings by a branch, exclude and bound algorithm.

In this approach the precedence constraints are not included in the analysis,

but they may be easily taken into account during the branch step. During the

branch all infeasible sequences due to violation of the due date are discarded

(here is possible to include the precedence constraints).

All the possible sequences are enumerated by a tree type construction, as

shown in Figure 9, on page 21. From the initial node we branch to n new nodes

on the first level of descendent nodes. Each of these nodes represents the

assignment of task i, 1 <= i <= n, to be the first in the sequence (the number

inside the node represents the task). Associated with such a node there is the

completion time t', of the task j in the position i, i.e., t"2 = a, + d, (the

completion time of each task, in a given branch of the tree, is indicated by the

number outside the correspondent node, the number inside the node represents the

task being assigned). Next we branch from each node on the first level to (n-i)

nodes on the second level. Each of these nodes represents the assignment of each

of the (n-i) unassigned tasks to be second on the sequence. As before, we

associate the corresponding node the completion time of the task t2" = max (t!',

a,) + d,, where i is the parent of the task j in the branch being evaluated, We

continue in similar fashion. The initial node is a dummy node, in the

unconstrained case all the node must be present in the level 1 (level 0 is

assumed to be the dummy root of the complete tree), in case with precedence

20

con.traints in the level 1 we allocate only the tasks that have only external

Lnpvt or no predecessor.

F

1 i 24

a 4 1 1 0 0
7 5 6

2 1 2 2

Figure 9 Branch and Bound Scheduling

Consider the (n-k+l) new nodes generated at the level k of the tree

construction, if the finish time t' associated with at the least one of these

nodes exceeds its due date then the subtree rooted at each one of the nodes that

are unfeasible may be excluded from further consideration.

The bounding condition applies only when there are no precedence

constraints and is intended to find an optimal (minimizing the length of the

block) ordering of the sequence.

In the case with precedence constraints this algorithm guarantees an

optimal solution, one disadvantage is the time complexity which is factorial in

the number of tasks in the worstcase.........etn, aS Well a

21

step by step definition of the algorithm, may be found in [Ref. BFR71 : pp. 514-

519].

Another possible implementation of this algorithm is to utilize the

concepts: length of the harmonic building block, and the firing interval for each

task; described in the previous algorithm. In order to include the precedence

constraints and the period of the operators the following scheme variant was

developed:

• define the agenda list as an empty list, define the waiting set as an
empty set,

" define the successors and predecessors (the precise definition of these
terms is described in section III.D.l) of each task,

" evaluate the length of the harmonic block,

" select the tasks that have no predecessors and put them in the waiting
set,

" select the task from the waiting set that has the smallest earliest start
time (ties may occur, then some other criteria must be applied), if all
the predecessors of this task are in the agenda list then put this task
in the agenda list as the last component, put all the successors of this
task in the waiting list; otherwise select the next task with smallest
earliest start time,

" evaluate the next firing interval of the task selected, if it is greater
than the length of the harmonic block then remove this task from the
waiting list; if the task was removed from the waiting list then verify
if the waiting list is empty, if it is empty then stop the agenda list
contains the schedule, otherwise go to the previous step.

The algorithm described above is not optimal as is the branch and bound

tree described in the reference, but has the advantage that is more compact in

time and space. The main deviation of the algorithm described above from the idea

expressed in the paper is that this algorithm does not take in account all the

possible branches, when a decision about more than one branch must be done then

after this point is not possible to come back and test the other branches.

Another possible version of this algorithm is to consider as criteria for

inclusion in the agenda list the earliest deadline instead the earliest start

22

time, the description of the algorithm needs to be slightly modified. An

implementation of the variant described above is available in [Ref. Ki!89].

5. The Minimize Maximum Tardiness with Earliest Start Scheduling Algorithm

This algorithm considers a sequencing problem consisting of n tasks and

a single processor. Task i is described by the following parameters:

" the ready time (a,), the earliest point in time at which processing may
begin on i (i.e., an earliest start time).

* the processing time (d,), the interval over which task i will occupy the
processor.

" the due date (b,), the completion deadline for task i.

The three characteristics a,, b,, and d, are known in advance and no

preemption is allowed in the processing of the tasks.

As a result of scheduling, task i will be completed at time C, and will be

tardy if C, > d.. The tardiness of task(T,) is defined by T, = max {0, C,-d,). The

scheduling objective is to minimize the maximum task tardiness, which is simply

T, = max, (T, I}.

For the static version of the n tasks single processor problem without

precedence constraints (all a,'s equal), T,, is minimized by the sequence bu =<

b121 =< ... =< b,, that is, by processing the tasks in nondecreasing order of

their deadlines.[Ref. BS74 : pp. 172]

In the dynamic version of the problem the statement above can also be

applied if the tasks can be processed in a preemptable fashion, in this case

sequencing decisions must be considered both at task completion and at task ready

time. Then we have the following:

. At each task completion the task with minimum b, among available tasks
is selected to begin processing.

" At each ready time, a,, the deadline of the newly available task is
compared to the deadline of the task being processed. If b, is lower,
task i preempts the task being processed otherwise the task i is simply
added to the liit of available tasks.

23

The solution to the preemptive case is not difficult to construct because

the mechanism is a dispatching procedure. Since all nonpreemptive schedules are

contained in the set of all preemptive schedules, the optimal value of T'.. in the

preemptive case is at least a lower bound on the optimal T., for the

nonpreemptive schedules. This principle is the basis for the algorithm.

In the nonpreemptive problem, there is a sequence corresponding to each

permutation of the integers 1, 2, ..., n. Thus there are at must n! sequences,

but some of these sequences do not need to be considered. The number of feasible

sequences depends on the data in a given problem, but will be usually less than

n!.

A branch and bound algorithm will be used to systematically enumerate all

the feasible permutations.

The branching tree is essentially a tree of partial sequences. Each node

in the tree at level k corresponds to a partial permutation containing k tasks.

Associated with each node is a lower bound on the value of the maximum tardiness

which could be achieved in any completion of the corresponding partial sequence

(obtained using the preemptive adaptation). The calculation of lower bound

allows the algorithm to enumerate many sequences only implicitly. If a complete

sequence has been found with a value T,, less than or equal to the bound

associated with some partial sequence, then it is not necessary to complete the

partial sequence in the search for optimum solution.

The branch and bound algorithm maintains a list of nodes ranked in

nondecreasing order of their lower bounds. At each stage the node at the top of

the list is removed and replaced on the list by several nodes corresponding to

augmented partial sequences. These are formed by appending one unscheduled task

to the removed partial sequence. The algorithm terminates when the node at the

top of the list corresponds to a complete sequence. At this point, the complete

24

sequence attains a value of T,. which is less than or equal to the lower bound

associated with every partial sequence remaining on the list, and the complete

sequence is therefore optimal.

Before the tree search begins, the algorithm uses a heuristic initial phase

to obtain a feasible solution to the problem. This initial feasible solution

allows the tree search to begin with a complete schedule already on hand, and

allows several partial schedules to be discarded in the course of the tree

search, simply because their bound exceed the value of the initial solution.

There are four heuristic available:

. Ready time: sequence the tasks in nondecreasing order of their ready
time, a.

. Deadline: sequence the tasks in nondecreasing order of their deadlines,
b,.

* Midpoint: sequence the tasks in nondecreasing order of the midpoints of
their ready times and deadlines (a, + b,)/2. Hence use the nondecreasing
order of a. + b,.

. PIO: sequence the tasks in the order of their first appearance in the
optimal preemptive schedule, which is constructed by the dynamic version.

The (Ref. BS74 : pp. 171-176] contains a complete and detailed description

of the algorithm as also an analysis of the performance of the algorithm

considering each heuristic, the global time complexity of this algorithm is

0(n2).

In (Ref. Hor74 : pp. 177-185] we may find some simple and quick algorithms

for the same set of conditions.

As can be visualized this algorithm does not take into account the possible

precedence constraints among the tasks, these precedence constraints must be take

in account during the evaluation of the branch and bound solution of the tree

search. The inclusion of the precedence constraints in the evaluation of the

heuristics must also be considered. The algorithm can be extended to handle the

case where tasks can be started only after some instance of time in the future

25

(this happens when some of the tasks are periodic), the modification necessary

is in the definition of task's scheduled start time.

6. The Deadline and Criticalness Scheduling Algorithm

This algorithm is based upon the following assumptions:

" All application tasks are known,but their invocation order is not known.
That is, tasks arrive dynamically and independently.

* There are no precedence constraints on the tasks; they can run in any

order relative to each other as long deadlines are met.

" Each task has the following characteristics: an arrival time (a,) that

is the time at which the task is invoked; a worst-case computation time
(d,) that is the maximum time needed for it completion; a criticalness
(n,) that is one of the n possible levels of importance of the task; a

deadline (b,) that is the time by which the task has to complete
execution. These characteristics are time invariant.

The algorithm that will be discussed in this subsection assumes the

existence of an environment that consists of a distributed system consisting of

N nodes. Each node contains m processors divided into two types: systems

processors dedicated to executing system tasks and application processors

executing only application tasks. The connection medium for the nodes is assumed

to be a shared bus. In other words the system under analysis consists of a

collection of multi-processors connected together in a loosely-coupled network.

The main systems of interest to the discussion are the local scheduler and

the global scheduler. The local scheduler at each node maintains a data structure

called the System Task Table (STT); this table contain, a list of applicable

tasks that have been dynamically guaranteed to make their deadline at this local

node. Entries in the STT are arranged in the order of execution and tasks are

dispatched for execution from this table. Each STT entry, corresponding to a

guaranteed task, has five attributes: the arrival time, the latest start time,

the criticalness, the deadline, and the computation time.

The Local Scheduler, which can re-order, insert or remove any entries in

the STT, is activated upon the arrival of a new task at the local node, or in

26

response to a nidding process which is initiated by the global scheduler. The

Local Schedule., working in a copy of the STT, determines if a new task can be

inserted into the current STT such that all previnus tasks in the STT as well

as the new task meet their deadlines. If so then the task is guaranteed and the

latest start time is deermined. If the new task cannot be guaranteed locally,

or can only be accommodated at the expense of some previously guaranteed task (s),

then the rejected task(s) is (are) handed over to the Global Scheduler.

The Global Scheduler then takes the necessary actions to transfer the task(s)

to any alternative nodes that may have the resources to accept this (those)

task(s) . The Global Scheduler uses bidding. Request-for-bids (RFB) are broadcast

to the other nodes when a local task has to be reallocated. If several remote

nodes respond with bids reflecting their surplus, the Global Scheduler evaluates

those bids and transfers the task to th,. node with the best bid.

The algorithm first attempts to ..uarantee an incoming task according to

its deadline, ignoring its criticalness. If the task is guaranteed then the

scheduling is successful. However, if this first attempt at scheduling fails,

then there is an attempt to guaranLee the new task at the expense of previously

guaranteed, but less critical tasks. If eno.gh less critical tasks can be found

then the new task is guaranteed at this site and the removed tasks are

transferred to alternative sites. If there are not enough less critica2 tasks,

or the deadline of the new task is such that the removal of any such tasks does

not allow the new task to meet its deadline, then the new task is transferred

to an alternative site. The process is repeated at the next node until the task

either meets its deadline or its deadline expires.

A detailed explanation of the algorithm above, discussing all the steps

as well the performance is contained in (Ref. BSR88 : pp. 152-160).

27

7. The Rate-Monotonic Priority Assiggnment Scheduling Algorithm

This algorithm assumes the following premises:

" The requests for all the tasks for which hard deadlines exist are
periodic, with period (p,).

* Deadlines consist of run-ability constraints, that is each task must be
completed before the next request for it occurs.

" The tasks are independent in that requests for a certain task do not
depend on the initiation or the completion of requests for other tasks.

" Run-time for each task is constant (d,) and does not vary with time. Run-
time here refers to the time which is taken by a processor to execute the
task without interruption.

An important concept in determining the rule is that of the critical

instant for a task. The deadline of a request for a task is defined to be the

time of the next request for the same task. The response time of a request for

a certain task is defined to be the time span between the request and the end

of the response to that request. A critical instant of a task is defined to be

an instant at which a request for that task will have the largest response time.

A critical time zone for a task is the time interval between a critical instant

and the end of the response to the corresponding request to the task.

Based on the definitions above is possible to infer that a critical instant

for any task occurs whenever the task is requested simultaneously with requests

for all higher priority tasks. One of the values of this result is that a simple

direct calculation can determine whether or not a given priority assignment will

yield a feasible scheduling algorithm. Specifically, if the requests for all

tasks at their critical instants are fulfilled before their respective deadlines,

then the scheduling algorithm is feasible. As an example consider two tasks T,

and T2 with P,
= 2, P2 = 5, and d, = 1, d2 = 1. If we let T, be the higher priority

task then from Figure 10 (a), on page 28, we see that such priority assignment

is feasible. Moreover, the run time of T2 can be increased at most to 2 but not

further as illustrated in Figure 10 (b) . On t other hand, if we let T, be the

28

higher priority task, then neither of the values of d, and d2 can be increased

beyond 1 as illustrated in Figure 10 (c).

T i I I I I t TI

1 2 3 4 5 1 2 3 4 5

T2 i ,- t I M 1- t

CRITICAL TIME ZONE 5 CRITICAL TIMlE ZONE 5

(a) (b)

T t

T2 No I

CRITICAL TItlE ZONE 2

(C)

Figure 10 Schedule of Two Tasks

The analysis of the example above suggests a priority assignment. Let p,

and p2 be the request periods of two tasks, with p, < p,. If we let T, be the

higher priority task then, according to the definition of critical instant, the

following inequality must be hold i_ p,/p, _I d2 + d2 =< p2 .

If we let T2 be the higher priority task, then, the following inequality

must be satisfied 1, + d2 =< p,. In other words, whenever the p, < P2 anc d,, d, are

such that the task schedule is feasible with T2 at higher priority than T,, it

'This condition is necessary but not sufficient to guarantee
*~ ~ 1 th fe aslbiliy oftepirt sij-me--nt-. The symbol - -

denotes the largest integer smaller than or equal to x.

29

is also feasible with T, at higher priority than T2, but the opposite is not

true. Thus we should assign a higher priority to T, and lower priority to T2.

Hence, more generally, it seems that a reasonable rule of priority assignment

is to assign priorities to tasks according to request rates, independent of their

run-times. Specifically, tasks with higher request rates will have higher

priorities. Such an assignment of priorities is known as the Rate-Monotonic

Priority Assignment. Such priority assignment is optimum in the sense that no

other fixed priority assignment rule can s6hedule a task set which cannot be

scheduled by the rate-monotonic priority assignment.

A formal development and analysis of this algorithm, as well the

theoretical development of maximum achievable processor utilization of this type

of algorithm is available in [Ref. LL72 : pp. 46-61].

Some algorithms for scheduling periodic tasks to minimize average error

utilize the rate-monotonic priority assignment algorithm in order to solve the

scheduling of the mandatory part of all the tasks, a -mplete description of

these algorithms may be found in (Ref. CL88 : pp. 142-150].

8. The Priority Ceiling Protocol Scheduling Algorithm

The priority ceiling protocol' is based upon the rate-monotonic priority

assignment. It minimizes the problem of problem of priority inversion J., the

presence of resource constraints. Priority inversion is any situation in which

a lower priority task holds a resource while a higher priority task is ready to

use it.

This protocol assumes the use of binary semaphores to synchronize access

to shared data. The main idea is to xepresent each semaphore as a server task.

Each critical region is represented as an entry of the task. Server tasks are

'This protocol is intended to be used when developing Hazd real-timne syst;, i
using Ada.

30

the only form of task allowed to contain an accept statement. A client task is

a non-server task that contains at least one entry call. A server task is said

to executing on behalf of client task T if the server has been called either

by T or by a server task that is executing on behalf of T . The priority ceiling

of a server task is defined as the highest priority of its clients tasks, i.e.,

the highest priority of task that has called the server directly or indirectly.

The main idea behind this scheme is to dynamically increase the priority

of the server tas.- to the value of the priority ceiling to avoid priority

inversion.

To apply the priority ceiling protocol in Ada, the following restrictions

on the use of Ada tasking features must be obeyed:

. All accept statements in a task must be contained in a single select
statement that is the only statement in the body of an endless loop.
There must be no guards on the select alternatives and no nested accept
statements. A task that contains such an accept is called a server task.

. There must be no conditionE" or timed entry calls.

. Each task must assigned a priority.

* A server task must have a priority lower than any of its clients tasks.

Under these conditions and definitions, the ceiling protocol priority

guarantees that a set of n periodic non-server tasks can be scheduled by the

rate-monotonic algorithm if the following conditions are satisfied:l =< i =< n,

and (d1 /p,) + (d,/p 2) '. . . + (d,/p,) + B,/p, =< i (21' I - 1), where d, is the

execution time of non-server task T1, p, is the period of the non-server task T ,

and B, is the worst case blocking time of the non-server task T,.

Another algorithm very similar to this one is the priority inheritance

protocol, but the priority inheritance protocol has a performance that is lower

than the performance of the priority ceiling protocol.

31

An extensive comparison between both algorithms is done in [Ref. LSS88],

a complete discussion of the priority ceiling protocol is available in (Ref.

Sha88].

9. The Bandwidth Preserving Scheduling Algorithms

These types of algorithm,' try to solve the deficiency of the rate-monotonic

approach of not applying to sporadic tasks. When the sporadic tasks are critical,

they can be incorporated into the rate-monotonic approach through the use of a

periodic server, a periodic task whose function is to service one or more

sporadic tasks. This is the pooling approach commonly used to provide predictable

sporadic response times.

These algorithms are classified as bandwidth preserving since they can

overcome the limitation of polling where the sporadic task arrives after the

polling instant. The algorithms are termed Priority Exchange and Deferrable

Server and are explained below.

a. Priority Exchange Algorithm

This algorithm may best be described by using an example. Consider a

set of n periodic tasks, T, to T. with run-times, d, to d., assigned priority by

the rate-monotonic algorithm. Let periodic server T, be used to service sporadic

requests. The Priority Exchange algorithm allows the highest priority periodic

server T,, to exchange high priority run-time d,, for lower priority periodic

task run-time TA for i greater than or equal to 2. The algorithm works as

follows: T, will always use its high priority run-time if there are sporadic

requests pending. If there are no sporadic requests pending and there are

periodic requests pending, T, will trade its high priority run-time d, for the

highest priority pending periodic task T1's run-time d, until it has exhausted

all its high priority run-time or sporadic requests arrive at which point it uses

its remaining run time to service the sporadic requests. The run-time of the

32

periodic task is advanced thus maintaining its schedubility and the periodic

server's run-time is now at low priority. Since the object is to maximize

sporadic response time without endangering periodic deadlines, and distinct tasks

may have the same priority level (always smaller than the sporadic task server),

ties are broken in favor of the sporadic task server.

The only case where the periodic server T, must completely sacrifice

his run-time is when the resource is idle, that is when there are no sporadic

or periodic tasks pending.

b. Deferrable Server Algorithm

The Deferrable Server algorithm is similar to the Priority Exchange

algorithm but easier to implement. Unlike the Priority Exchange algorithm the

Deferrable Server algorithm does not trade down its high priority run-time d,

when there are no sporadic tasKs pending but rather holds its high priority run-

time until the end of the server period. The cost of this reduced complexity is

a slight decreast in the worst case periodic task scheduling.

The Deferrable Server algorithm creates a periodic server T, with d,

run-time with priority defined by the server's period T,. This server has the

entire period within which to use its d, run-time at priority Pr,. If at the end

of the period any portion of the d, run-time is not used then it is discarded.

The formal proof of the feasibility of the schedule generated as well

a detailed analysis of these algorithm can be found in [Ref. LSS88]. An improved

version of the Priority Exchange algorithm is available for analysis in [Ref.

LSS88 : pp. 251-2581.

10. The Time-Driven Systems using Augmented Petri Nets Model

This model outlines a methodology for specifying the timing requirements

for a class of time-driven embedded systems. In this model time-driven systems

are defined as systems wherein the time in which the system and portions of the

33

system execute their intended functions is critical to successful performance,

and wherein a master timing mechanism controls the repetitive performance of

similar activities at regular intervals. This means that we are working with hard

real-time systems with periodic tasks and precedence constraints.

The approach taken is to use a Petri net3 to model a time-driven system.

The Petri net model is then augmented by attaching an execution time variable

to each node in the network representing a task in the system. Although most of

the work in this area indicates that the notion of time may be included as a part

of a procedure attached to the nodes used to model the system, the concept is

not fully developed.fRef. CR83 : pp. 603-616]

A Petri net is a bipartite directed graph consisting of place nodes and

transition nodes. Places, drawn as circles, are used to represent conditions;

transitions, drawn as bars, are used to represent events. The "marking" (m) of

a Petri net is a function that assigns tokens to the places of the net. Tokens,

drawn as small dots in the circles, are used to define the execution state of

the Petri net, and their number and position change during execution.

The marking of a Petri net is changed by the firing of transitions. A

transition is enabled to fire if and onx.y if there is at least one token in each

of its input places. The firing of a transition is an instantaneous event during

which one token iE removed from each of the transition's input places and one

token is deposited in each of its output places.

The removal of tokens from input places as result of transition firing has

the effect that, if two or more transitions are currently enabled by the presence

of a token at the same input place, the firing of any one of those transitions

removes that token and disables the remaining transitions. These transitions are

'A good introduction, as well an extensive bibliography about Petri Nets,
is available in the paper "Petri Nets", J.L. Peterson, ACM Computing Surveys,
Vol. 9, No. 3, September 1977, p. 224-252.

34

said to be in conflict, and the place causing the conflict requires a decision

to be made between multiple output paths. Figure 11, below, shows a Petri net

with three transitions firing consecutively.

A SIMPILM PETrn ZgE'r

L4

IKM nAR XInO AFTER r3 FZRMES

Figure 11 A Petri Net

The places are used to represent tasks, and the execution of a task is

modeled by a transition representing the instantaneous start of execution with

a directed arc to a place representing the condition of that task being in

execution. A nonnegative execution time d, is assigned to each place p,. A token

bcc.c rcady to34d r an Output of place p only after d.

35

time units have expired since p, first received the token. This modeling approach

preserves the classic Petri net notion of transitions as a instantaneous events,

and it does not obscure the state of the system during the time that a task is

in execution.

The net constructions to be used are best defined in terms of input and

output functions of their transitions and places. Let I, be a set-valued

transition input function mapping a transition t, to the set of places from which

arcs exist to t,. Similarly, let O be a set-valued transition output function

mapping t, to the set of places to which arcs exist from t,. The input and output

functions may be extended to include a similar place input function (Ip) and a

place output function (O).

To model time in a Petri net a basic construction will be defined:

The master timing mechanism is modeled by a net construction that
includes a cycle, called the driving cycle because its execution time
drives the execution time of the remainder of the Petri net. The master
timing mechanism consists of a place p, the master timing task,
connected by an elementary loop to a transition t, such that : the
initial marking of p, (m1=l) reproduces itself with a fixed execution time
(driving cycle time) T,; I, (t1) = {p,}, t, only input place is p,; p, in
O,(t,) and 10..(t) I > 1, that is p, is one but not the only output place
of t,; and I,(p,) = O(p) = (t,), that is t, is p,'s only input and only
output transition. A driven cycle of a time-driven system is available
on Figure 12 on page 37. The dynamic result of the driving cycle
construction is the firing of the transition t, precisely once every T,
time units.

Using the basic concepts presented, the Petri net model of a time-driven

system may be formed by adding places and transitions such that:

" each place has a fixed positive finite execution time (to model a task)
or a zero execution time (to model a condition).

• the bipartite nature of the Petri net is preserved, that is arcs from
places always go to transitions and arcs from transitions always go to
places.

" to every place and transition added there exists a directed path from the
transition t, in the driving cycle.

. .cventually, all the paths tcrminatc in transitions rpreeti outputs
of the system.

36

Ti

p1 ti~

A DRIVING CYCLE OF A TIME-DRIVEN SYSTEM

TI T2

P1 ti p2 t2

THE SIMPLEST TIME-DRIVEN SYSTEM
Figure 12 A Driven Cycle for a Time-Driven System

This procedure essentially "roots" the Petri net model in the driving cycle

and ensures that the execution frequency of each process modeled by the Petri

net is dependent on the firing frequency of the transition in the driving cycle.

The determination of the frequency at which a transition in the net fires

relative to the firing of the transition in the driving cycle plays an important

role in the analysis of tne net construction, because the relative firing

frequency is directly related to the interarrival time of consecutive tokens at

a place. The two key concepts are the maximum relative firing frequency (MRFF)

of the input transition of a place and the minimum token interarrival time

(MTIAT). These are defined as follows:

" The MRFF of a transition is the number of times the transition fires for
each firing of the driving cycle transition, assuming that all decisions
lying between the driving cycle and the transition are made in favor of
the path to the transition.

" The MTIAT of a place is the shortest possible time between the arrivals
of any two consecutive tokens.

37

In many cases, the MRFF is found directly from the net consistency

computations, it is only when a decision (multiple-output) place is encountered

that additional information or assumptions are required. Decisions may be

divided into two classes: predetermined and data-dependent. For determined

decisions, it is known during the modeling process how often each output path

is to be taken, and the decision as to which path is taken during execution is

not based on data or another uncontrollable parameter. For data-dependent

decisions, the modeler does not know precisely how often each path will be taken

since this decision is dependent on data or some other dynamic parameter.

Predetermined decisions in time-driven systems may be used to permit a

single driving cycle to be the timing basis for several processes operating at

different basic timing rates. On the other hand, data-dependent decisions require

that some assumption be made as to the frequency with each path will be taken.

For most time-driven systems, it will generally be desired to evaluate the system

under the worst case assumption. This requires considering the effect on

transition firing frequencies when edch output transition of the data--dependent

decision is assumed to fire at the same frequency as the place's input

transition, and gives raise to the MRFF definition.

Four analyzable subclasses of time-driven using Petri net have been defined

in (Ref. LS87). These subclasses are cited bellow:

" Asynchronous systems may be defined in terms of the cardinality of the
sets of inputs and outputs of their places and transitions. For each
place p, and for each transition t, (excluding the driving cycle
transition) the following conditions hold : 1) II(p)l = IO(t) I = 1,
2) IO(p,) I >= 1. The Figure 13 on page 39 shows an example of an
asynchronous time-driven system.

" Synchronized systems permit all of the constructions used in asynchronous
systems, but also permit the use of synchronized parallel path
constructions. A synchronized parallel path construction consists of a
set T of transitions and a set P of path places pp. T consists of one
initial transition t1, one final transition t,, and a set Tp of zero or
more path transitions tp. P and Tp each consist of n (2 or more) disjoint

38

subsets such that P, union with TP, represents a path from t, to tf. Figure
14 , on page 40, shows an example of synchronized time-driven system.

TZ T4

T1 L

p66

p1 t3

T3 p5

,7(

Figure 13 An Asynchronous Time-Driven System

Independent cycle systems permit all of the constructions in synchronized
systems, but also permit cycles to be formed by multiple inputs to
transitions provided that all the cycles so formed are independent. The
place outside the cycle with one input and one output which provides an
input to the cycle will be called the entry place. An independent cycle
consists of a set T of transitions and a set P of cyclic path places p,.
T consists of a cycle input transition t, and a set TP of zero or more
cyclic path transition tP. The union of T and P represents a cyclic path
beginning and ending at t,. The cyclic path place which is an input to t,
is marked initially with a single ready token so that t, will fire
immediately when the first token is ready at the entry place.

Shared resource systems provide a significant extension to independent
cycle systems, since they allow cycles to overlap in such a way so as to
permit the modeling of competition of shared resource. This is done by
the addition of a shared construction. A shared resource construction is
a set of n (2 or more) otherwise nonintersecting independent cycles,
each of whose input transitions have a common firing frequency under all
conditions, but which have been modified by replacing their final places
with d conun bi i e~d xbuurce. A shated tesouice consists of a set T Of

zero or more resource path transitions tP and a set P of places. P

39

consists of an initial place p,, a final place pf (possibly the same as
p,) and zero or more resource path places p,. A shared resource
construction is shown is Figure 15 on page 41.

T3

T2 p

tt2

p5 p7

Figure 14 A Synchronous Time-Driven System

The construction of an analyzable timed Petri net model of a time-driven

system consists of integrating the building blocks described above.

The following procedure may be used to construct a Petri net model of a

time-driven system:

1) Construct the driving cycle;

2) As required by the system being modeled, add output places to the

transition such that each place has:

" a single input arc and,

" either zero execution time (for a condition) or a finite positive
execution time (for a task);

40

the shared resource

Fe Ten /

pen

ten

Figure 15 A General Shared Resource

3) As required, to each place as yet having no output, add one or more

of the following net constructions as output:

" a single transition with exactly one input arc,

" a complete synchronized parallel path construction,

" a transition with multiple inputr which will complete a
synchronized parallel path construction,

" an independent cycle,

" a cycle which forms part of a shared resource construction
guaranteeing that all entry places have input transitions which
will fire at the same frequency;

4) As required, to each transition as yet having no outputs (which is not

an output of the net), add one or more output place (as in step 2);

5) Repeat steps 3) and 4) until the system has been completely modeled.

41

The explanation presented is this section is just a short review of the

work done in [Ref. LS87], for more details and formal proof of all the criteria

and constructors, as well analysis of the safeness of the entire Petri net the

reference cited above is mandatory reading.

The benefits of this methodology are the following:

Timing requirements may be stated formally and specifically, without
the need to assign a time to each task individually.

Since the net constructions are well-defined, automated methods may be

used to model a hard real-time system, because its possibility to assign

different time-driven systems this model may be powerful to solve the case of

scheduling problem in a multiprocessor environment. The basic concepts under this

approach differ from the concepts of the graph model described in (Ref. Mok85a]

and (Mok85b], and then this approach is not applicable to the solution of the

static scheduler problem under the management of th U.APS system.

11. The Sequencing via Modular Deccmposition

This approach assumes that the sequencing problem consists of a set of

n tasks, wherein each task is described by the following characteristics:

" the ready time (a,), the earliest point in time at which processing may
begin on i,

" the processing time (d,), the worst-case interval over which task i will
occupy the processor,

" the deadline (b,), the latest completion time for task i,

• all the tasks are nonpreemptable.

It is also assumed by this approach that there is a precedence constraint

over the i.eL of tasks that is possible to describe in terms of an acyclic

directed graph.

The optimal sequencing via modular decomposition approach also assuries

that exists a cost function that may be associated with the execution of each

permutation of the tasks in the set.

42

The main idea in the theory of sequencing and scheduling is the method

of adjacent pairwise task interchange. This method compares the costs of two

sequences which differ only by interchanging a pair of adjacent jobs. In 1956,

W. E. Smith defined a class of problems for which a total preference ordering

of the tasks exists with the property that in any sequence, whenever two adjacent

tasks are not in preference order, they may be interchanged with no resultant

cost increase. [Ref. Smi56 : pp. 59-66]. A number of papers have generalized the

adjacent pairwise interchange property to the adjacent sequence interchange

property, whereby adjacent sequences of tasks are interchanged (Ref. Law78 : pp.

75-90, Ref. MS79 : pp. 215-224]. This generalization has resulted in efficient

algorithms for precedence-constrained problems where the generality of the

precedence oriented graph is restricted to some specific types of

structures.(Ref. Sid8l : pp. 190-204]

With the recent development of efficient algorithms for locating modules

in a precedence directed graph, a new class of sequencgng algorithms has been

promising (Ref. CS82 : pp. 214-228, Ref. BM83 : pp. 170-184, Ref MJ89 : pp. 1-

19]. These algorithms obtain optimal sequences by finding optimal subsequences

for progressively larger modules, until all the tasks are sequenced. To guarantee

optimality of such algorithms, the cost function must satisfy the "job module

property", which states that any optimal solution to a subproblem defined by a

job module is consist-nt with -t least one optimal solution for the entire

problem. These results imply that precedence constraints built up iteratively

from prime posets of width bounded by some fixed value can be solved in

polynomial time.[Ref. MS87 : p. 22-31]

The basic algorithm used in this approach is the following:

1. The inputs are: the sequencing function, the precedence constraints,

and the data about each task,

2. Find the composition tree T of the precedence constraints directed
graph,

43

3. Find any node M in the composition tree, all of whose sons are
presequenced,

4. Using dynamic programming, find an optimal sequence for the subproblem
on M,

5. Replace M in T by the optimal sequence generated in 3. M is now
presequenced by this sequence,

6. If all nodes of T are presequenced stop; the sequencing corresponding

to the root of T is the optimal permutation. Otherwise go to 3.

A more detailed and deeper analysis of aach aspect of this algorithm, as

well its applicability to scheduling the tasks in a rapid prototyping system such

the CAPS will be shown in the Chapter IiI during the theoretical development of

the optimal static scheduling algorithm.

D. SUMMARY

The survey presents a sample of previous scheduling algorithms for hard real-

time 3ystems. Many of the algorithms discussed do not address the problem of how

to sce-dule tasks that have precedence constraints. When there is a constraint

on ti.- earliest ready time usually an algorithm based in a tree branch and bound

is useJ. The concept of a cost function to evaluate the schedule was shown in

the mix.,mize maximum tardiness with early start times scheduling algorithm. When

precedi.,e constraints were considered in the algorithms the solutior adopted

is to use some kind of graph representation (directed graph or Petri nets), arid

the notion of a base timeframe is used (harmonic block for the directed graph

representation, and timing driven cycle for the Petri nets) . None of the

algorithms presented an optimal solution to the problem of scheduling hard real-

time system with precedence constraints.

Petri nets seems to be good way to try to solve the problem, but, as stated

in the reference, there is a lot of work to be done before the theoretical basis

is well established. Based on Petri nets is possible to model a hard real-time

system using an automated tool (similar to CAPS), but this tool is not yet

available. As stated in the section II.C.9 this tool will allows the development

of automated system, similar to CAPS, designed to solve the scheduling r oblem

of hard real-time systems.

The approach that will be followed in this thesis is to refine and extend the

ideas developed in the harmonic block with precedence constraints scheduling

algorithm (in order to define a timeframe). Instead of using a topological sort

of the operators we will consider all the instances of the operators that occui

44

during the timeframe. The new graph obtained from the two concepts above will

be analyzed with the new tools available from the recent developments in the

analysis of directed acyclic graphs (theories about sequencing via modular

decomposition and enumerative procedures).

The evaluation criterion for the work will be a modified version of the

tardiness cost function defined in the minimize maximum tardiness with early

start times scheduling algorithm.

45

III. DESIGN OF AN OPTIMAL STATIC SCHEDULING ALGORITHM

In this chapter we develop two approaches for the optimal scheduling problem

for a single processor. in order to define the level of difficulty of the problem

in question we introduce the concept of non-polynomial problem. A detailed

definition of a task , its parameters and the correlation with the operator is

explained in detail. The graph of constraints, which combines the precedence

constraints of the tasks with some time information is described in detail. The

cost functions applicable are introduced and analyzed. The algorithms for the

two approaches are described in detail.

A. NON-POLYNOMIAL PROBLEMS

For many years many researchers have been trying to find efficient algorithms

for solving various combinatorial problems, with only partial success. Some of

these problems are: the simplification of Boolean functions, scheduling problems,

the traveling salesman problem, certain flow problems, covering problems,

placement of components problems, minimum coloration graphs, winning strategies

for combinatorial games.

Since all the problems we consider are solvable, in the sense that there is

an algorithm for their solution (in finite time), we need a criterion for

deciding whether an algorithm is efficient'. The length of the data describing

the instance is called the input length. This length depends on the format chosen

to represent the data (for graphs we can use an adjacency matrix, or incidence

lists, etc.). An algorithm is efficient if there exists a polynomial p(n) such

that an instance whose input length is n takes at most p(n) elementary

computational steps to solve. That is, we accept an algorithm as efficient only

if it is of polynomial time complexity. This is a crude criterion, since it says

nothing about the degree or coefficients of the polynomial. In practical

applications where n is small the degree of the polynomial and the size of the

coefficient are significant.

Assume we have two algorithms for a solution of a certain problem. Algorithm

P, is of complexity n2 and algorithm P, is of complexity 2P. Let n, be the longest

instance (n. is its input length) which can be solved by algorithm P2, using a

given computer A. Now if we have a computer B ten times faster, the largest

4A good discussion and analysis of alqorithms is available in Aho, D.L.,
Hopcroft, J.E., and Ullman, J.D., The Design and Analysis of Computer Algorithms,
Addison-W, sley, Menlo Park, California, 1974.

46

instance n we can handle must satisfies the equation n = n, + log, 10, this means

that the new input length is n, + 4, this is not a very dramatic improvement.

However, if no is the largest instance we could handle, by A, using algorithm P ,

then now we can handle, by B, instances of length up to n where n2 = 10 n',. This

means that we would be able to handle input length with more than three times

the original input length.

The class of problems in NP can be defined as a class of language recognition

problems solvable by a nondeterministic Turing machine in a number of steps

bounded by a polynomial in the size of the problem input length5. Another

important aspect, in order to analyze the complexity of an algorithm, is the

concept of polynomial reducibility. Consider two problems P, and P2: we say that

P, is polynomially reducible to P, if for any instance of P, an instance of P2 can

be constructed in a polynomial-bounded number of steps such that solving the

instance of P2 will solve the instance of P, as well. Thus, P, can be informally

considered to be a special case of P2. If P, polynomially reduces to P2 and also

P2 polynomially reduces to P, then the two problems can be considered equivalent

from the point of view of computational complexity. The literature available

shows that all the NP problems are polynomially reducible to the "satisfiability

problem".(Ref. Coo7l : pp. 151-158] Based on this the class of NP-complete

problems can be defined as those problems in NP to which the satisfiability

problem polynomially reduces, or equivalently a problem from NP is NP-complete

if all problems from NP can be polynomially reduced to it. Since the

satisfiability problem is a decision type problem, requiring a yes or no answer

for the question whether a given Boolean variables can assume the value true,

it is customary to formulate NP-complete problems as decision problems requiring

yes or no answer. For combinatorial optimization where the solution is in the

form of an optimal solution, the terminology NP-hard is used often, if the

problem formulated as a decision problem is NP-complete. It has been proved that

some known NP-complete problems can be reduced to certain scheduling

problems.[Ref. GJ78]

Since many practical problems are "intractable" in this sense, hope for

producing algorithms which would find optimal solutions in a reasonable amount

of time had to be abandoned and instead attention was directed to the development

and analysis of heuristic algorithms. It was soon realized that the very

'A rigorous mathematical definition of Turing machine is described in
Even,S., Graph Algorithms, Computer Science Press, 1979.

47

pessimistic worst-case analysis included in the NP-complete results did not

accurately reflect the success which heuristic algorithms were achieving on real-

world combinatorial algorithms.

The search for a theoretical answer to this question leads to three main

approaches. The first allows approximations to be made to the optimal solution.

In a very few cases a constant bound on the ratio of the approximation to the

optimal may be proven however in most cases such a bound is not known.

Furthermore even if such a bound is known, in practice the observed behavior of

the algorithm is often much better than the bound. The second approach

substitutes either expected case or average case analysis for worst-case

analysis. Typically this type of research involves the probabilistic analysis

of a particular heuristic algorithm. Often this is accomplished by analyzing the

algorithm's behavior on some random input. One shortcoming of this approach is

that usually the graphs encountered in practice have some structure which

violates the assumption that all edges have the same independent probability of

being present. For this reason the algorithm's performance in a real-world

environment often is not as good as predicted by the optimistic expected case

or average case analysis.

The third approach, and the one we take in this thesis, maintains the worst-

case analysis and restricts the class of input to be considered. The hope here

of course is that the intractable problem will be solvable in a reasonable amount

of time, if possible in polynomial time based in some characteristic of the

input data (Ref. CPS85 : pp. 926-934). The restrictions that are applied to the

class of input are discussed in the further sections. Examples of families of

graphs which have received this type of study, with some degree of success,

include comparability graphs, permutation graphs, interval graphs and planar

graphs.

B. OPERATORS AND TASKS

The PSDL language is based on a computation model which treats software

systems as networks of operators communicating via data streams. The

computational model is an augmented directed graph G = (V,E,T(v),C(v)), where

V is the set of vertices, E is the set of edges, T(v) is the set of timing

constraints for each vertex v, and C(v) is the set of control constraints for

each vertex v.

All PSDL operators are state machines. Some PSDL operators are functions, i.e.

machines with only one state. When a operator fires, it reads one data value from

48

each of its inputs streams, undergoes a state transition, and writes at most one

data value into each of its output streams. The output values can depend only

on the current set of input values and the current state of the operator. StAte

transitions and input/output operations on data streams can occur only when the
associated operator fires. The firing of an operator is controlled by the

associated timing and control constraints. Operators can be triggered by the

arrival of a set of input data values or by a periodic temporal event.(Ref.

Luq89 : p. 77-8]

The operators in PSDL may be atomic or composite. The atomic operator is

defined as the basic indivisible unit of work to be executed, and the composite

operator is defined as being an operator that can be decomposed into atomic

operators. Two possibilities of decomposition of a composite operators exist:

linear decomposition and network-like decomposition. [Ref. Jan88 : pp. 34-35, Ref.

Mar88 : pp. 55-56] Figure 16, on page 50, illustrates the two possible

decompositions.

The first restriction that we impose on the scheduling problem (comming from

the PSDL source file) is that all the operators must be atomic. Iis means that
all the operators in the scheduling problem are indecomposable, or already had

been decomposed into their atomic components.

Any PSDL operator can have timing constraints associated with it. An operator

is time-critical if it has at least one timing constraint associated with it,

and is non time-critical otherwise. There are several different kinds of timing

constraints, which can be classified into those that apply to all time-critical

operators, those that apply only to operators triggered by periodic temporal

events, and those that apply only to operators triggered by the arrival of new

data.

Every time-critical operator must have a maximum execution time (MET). The

MET of an operator is an upper bound on the length of the execution interval (EI)

for the operator. All the actions that may be required to fire an operator once

must fit into the execution interval. These actions are listed bellow.

" Reading values from input data streams,

• Evaluating triggering conditions,

" Calculating output values,

" Evaluating output guards,

* Writing values into outputs streams.

49

PRECEDE NCE COrNSTrRAZW1TS

LINEAR DECOMPOSITION 02r 0

NEm'J0NK DECOrNPONI'ION ON' N

Figure 16 Linear vs. Network Decomposition

The execution interval for an operator does not include scheduling delays.

A scheduling delay is the time between the writing of a value into a data stream

by a producer and the reading of that value by the consumer operator.

Operators triggered by temporal events are periodic in PSDL. Every periodic

operator must have a period (PERIOD) and may have a deadline (FINISHWITHIN).

These two time constraints partially determine the set of scheduling intervals

(SI) for each operator. Each periodic operator must be fired exactly once in each

scheduling interval, and must complete execution before the end of the scheduling

interval. The period is the length of time between the start of any scheduling

interval and the start of the next scheduling inter,,al. The deadline is the

length of each scheduling interval. The relation between the timing constraints,

scheduling intervals, and execution intervals for a periodic operator is

illustrated in Figure 17, on page 71 (Ref. Luq89]. The execution intervals and

scheduling intervals in the diagram are indexed by integers in order of their

occurrence. Thus SI[n] denotes the n"h scheduling interval for the operator and

EI(n] denotes the n" execution interval for the operator.

50

SI[n] SI[n+1]

EI[n] EI[n+l]

I I I

ET

FINISHWITHIN

PERIOD
Figure 17 Timing Constraints for a Periodic Operator

Operators triggered by the arrival of new data values are sporadic. Timing

constraints for sporadic operators are optional. Sporadic operators with timing

constraints must have both a maximum response time (MRT) and a minimum calling

period (MCP) in addition to an MET. The MRT is an upper bound on the response

time, while the MCP is a lower bound on the calling period. The relation between

these quantities is illustrated in the Figure 18, on page 52 [Ref. Luq89]. SI(n]

denotes the nth scheduling interval for the consumer operator, which is sporadic

and time-critical. CEI[n] denotes the ne" execution interval for the consumer

operator, and PEI(n] denotes the n" execution interval for the producer

operator, which is assumed here to be included in the definition of the

scheduling problem. The response time associated with a consumer operator is

measured from the end of the execution interval for the producer operator of the

triggering data value to the end of the execution interval for the consumer

operator of the triggering data value.

Unlike the MET, the MRT includes a scheduling delay. The MRT gives the length

of the scheduling interval for a particular triggering data instance. The calling

period of an operator is the length of time between the end of the execution

interval for the producer of the triggering data value and the end of the

execution interval for the producer of the next triggering data value. The

calling period must not be less than the MCP. The MCP of an operator constrains

the behavior of the producers of the triggering data values rather than

constraining the behavior of the operator itself. An MCP constraint is needed

51

to allow the realization of a maximum response time constraint with a fixed

amount of computational resources, via a limit on the frequency with which new

data can arrive.[Ref. Luq89 : pp. 10-13]

SI[n]

PEI[n] CEI[n] PEI[n+i]

]4RT

CALLING PERIOD
Figure 18 Timing Constraints for a Sporadic Operator

The second restriction that we impose on the scheduling problem is that all

the operators must be periodic. In order to handle the sporadic operators they

are converted into their correspondent periodic equivalent operators. The

conversion may be done using the procedure described in (Ref. Mar88 : p. 12],

where the period of the equivalent periodic operator is defined as PERIOD =

minimum(MCP, MRT-MET), an equivalent periodic operator derived in this manner

has a deadline equal to the maximum execution time.

The third restriction on the scheduling problem, with respect to the

operators, is that only the time-critical operators are analyzed in order to

obtain the optimal static schedule. The non time-critical operators are handled

by the Dynamic Scheduler.

Since each periodic operator fires more than once during the execution of the

problem, we define each firing of an operator to be a separate task to be

scheduled.

Another characteristic of an operator is its phase, which is defined as the

delay between the reference time zero and the starting time of the first

scheduling interval for this oerator. The phase is a function of the operator

52

and the permutation of operators chosen by the scheduler. This fact is

illustrated in Figure 19 on page 53.

B OPERATOR PERIOD MET

A 10 3

A B 10 4

C 10 2

?has@ C

SEQUENCE phase a

ABC A B

I I I I I
L 2 3 4 £ 6 7 a 9 1,

Phase B

Pn2ago C

ACB _. A BM

1 2 3 4 9 6 7 9 9 10

Phase6 C

a 2 3 4 S 6 7 8 9 10

Figure 19 Possible Phases of an Operator

C. GRAPH OF CONSTRAINTS

In the current version of the Static Scheduler being utilized by CAPS, the

graph of precedence constraints and the periodicity of each operator are analyzed

independently. In order to analyze the set of constraints using the tools

available for enumeration or for modular decomposition it is necessary to have

all the tasks defined, as well as all the interconnections among them.

The precedence constraints are defined by communications among the operators

that compose the system being developed. PSDL operators communicate by means of

named data streams. PSDL data streams can carry either normal data or tokens

representing exceptions. All of the data values carried by a stream must be

instances of a specified abstract data type associated with the stream.

There are two different kinds of data streams in PSDL, dataflow streams and

sampled streams. Dataflow streams are used in applications where the values in

the stream must not be lost or replicated and the firing rates of the producer

and consumer are the same, while sampled streams are used in application3 where

53

a value must be available at all the times and can be replicated without

affecting their meaning. Each data stream represents a directed data path between

two operators, and the producer is defined as the predecessor of the consumer

(and conversely the consumer is the successor of the producer).

We expand the augmented graph defined in section B as: V is the set of all

the operators, E is the set of all the dataflow paths, T(v) is the set of timing

constraints of each operator and contains the following data fields:

1. T(i).PERIOD,

2. T(i).TIMEALLOWED, equivalent to FINISHWITHIN or MRT,

3. T(i).NUMBEROFINSTANCES',

4. T(i).FIRSTINSTANCE, and

5. T(i).PHASE'

The set V may be represented as a vector of strings or integers (OPERATORID),

where those values represent the operator identifier; the set of precedence

constraints (dataflow paths) E may be represented as a adjacency matrix, where

the element E(i,j), i and j are natural numbers, is 1 if the OPERATORID(i) is

predecessor of OPERATORID(j), and zero otherwise; the set of timing constraints

T can be represented as a vector of records where each record contains the timing

elements defined above, the vector V and the vector of T(v) records have

corresponding components (the operator V(j) has the timing constraints T(j)).

In order to simplify further manipulations on the data two dummy operators

are included in the set V: the dummy operator V(1), and the dummy operator

V(n+2), where n is the number of operators in the original set V furnished by

the user. The row 1 and n+2, and the columns 1 and n+2 of the adjacency matrix

are defined as having only the 0 (zero) value, n+2 is denoted by N.

At this step the following constraints may be checked for the set of timing

constraints (except for the two dummy operators):

1. T(i).MET <= T(i).TIMEALLOWED,

2. T(W).MET <= T(i).PERIOD, and

3. T(i).TIME ALLOWED <= T(i).PERIOD.

We assume that only well formed sets are submitted to the optimal scheduling

algorithm, and that constraints violations lead to an error message and early

termination of the scheduling process.

These parameters of an operrator are not defined by the user, they are
computed by the scheduling algorithm during the analysis of the problem.

54

In order to obtain the graph of constraints we need to define a timeframe.

The approach that we selected is to define a harmonic block as in [Ref O'He88

: pp. 34-41]. This harmonic block is repeated indefinitely and ensures that all

the time-critical operators are performed within their timing constraints (if

a feasible solution to the proposed problem exists). This means that our graph

of constraints represents one instance of the harmonic block.

Three steps are necessary to obtain the graph of constraints. The first is

to find the length (in time) of the harmonic block. After this length is defined

we need to define which tasks must be scheduled as well as the precedence

constraints among these tasks. The third step is to order all the tasks.

1. Length of the Harmonic Block

The length of the harmonic block is simply the least common multiple (LCM)

of all the operators that belongs to the set in analysis. Z is defined as the

LCM of (X,Y) if and only if Z mod X = 0 and Z mod Y = 0 and (W mod X = 0 and W

mod Y = 0) implies that Z <= W. The LCM is computed by taking two periods at a

time, multiplying them together, and then dividing this result by the greatest

common divisor (GCD)of the two periods. This result is then multiplied together

with the next period and divide by their GCD until all operators in the set have

been processed. The result of this operation on the last pair in the set is the

LCM of all operators in the set.

The algorithms for the GCD and LCM are presented below:

a. Algorithm for GCD

define gcd(a,);

if b > a then definegcd(b,a)

else if a mod b = 0 then b

else definegcd(b, a mod b)

end if;

end define_gcd.

Example: Operator Period

1
2 6
3 4
4 14
5

The application of the algorithm gives: GCD = 2.

55

b. Algorithm for LCM

define_1cm;

N := size(V);

LCM := 1;

for I in 2 .. N - 1 loop

P := T(I).PERIOD;

LCM := LCM * P / gcd(LCM,P);

end loop;

end define_1cm;

Ex.1-ple: Using the same set of data as before we obtain the following

result : LCM = 84.

2. Tasks of the Graph of Constraints

The tasks are the instances of each operator that must be executed inside

the timeframe, the number of tasks for each operator is obtained by dividing the

length of the harmonic block by the period of the operator. The result of this

operation is stored in the timing constraints record T(v) of each operator.

After the evaliation of the number of tasks for each operator it is possible to

check another input constraint. One condition necessary but not sufficient

condition for the set to be feasible is that the sum of all the execution times

of the tasks must be less than or equal to the length of the harmonic block.

The generation of the graph of constraints for the tasks is done in two

steps. During the first step we produce a chain for each operator, and in the

second step we use the precedence constraints among the operators in order to

generate the precedence constraints among the tasks.

a. Algorithm for Number of Tasks

define number of tasks;

N := size(V);

T(1).NUMBEROFTASKS 1;

T(N).NUMBEROFTASKS 1;

for I in 2 .. N - 1 loop

T(I).NUMBEROFTASKS := LENGTHHARMONICBLOCK / T(I).PERIOD;

end loop;

end define number of tasks.

Example: Using the same set of data as before.

T(2).NUMBER OF TASKS = 14
T(3).NUMBER OF TASKS = 21
T(4).NUMBEROFTASKS = 6

56

3. Precedence Constraints of the Tasks

Before we generate the graph of constraints some definitions are necessary.

In this thesis a task i is said to have precedence over task j, denoted by

i -> j, if task i must occur before task j in every feasible permutation, in

other words i is the predecessor of j.

A partially ordered set (poset) is called a chain if exactly one

permutation is feasible (if the problem has no precedence constraints then the

correspondent poset is called an antichain, but this case is not applicable to

us). As we can see, by the definition above, each set of tasks corresponding to

the same operator is a chain, because we cannot execute the second instance of

the operator unless we have already executed the first instance and so on.

We generate the precedence relations between t'e tasks (graph of

constraints) the precedence relations between the operators via the following

rule:

Suppose 0,, 0, are operators and TI, T2 are corresponding tasks with

instance numbers I,, I, and periods P,, P2 .

TASK(T,) .OPERATOR_NUMBER = 0,

TASK (T2) .OPERATOR-NUMBER = 02,

TASK(T,) .INSTANCENUMBER = I,

TASK(T 2) •INSTANCENUMBER = I,,

T(Ol).PERIOD = P,

T(02) .PERIOD = P2 , then the task precedence relations are defined by the

following:

If E(O,,O 2) = I and P *I = P2 .en ETASK(T,T) = 1, and

otherwise ETASK(T ,T 2) = 0.

All the first instance of each operator i is precceded by the dummy

operator 1 if and only if there is no other task that precceds i.

All the last instance of each opertor i precceds the dummy operator N if

and only if they does not precced another task.

The data structure selected for each task is a record with the following

data fields:

1. TASK(i).OPERATORNUMBER which represents the number of the
corresponding operator in the vector V;

2. TASK(i).INSTANCENUMBER which represents the position of the
corresponding operator in the chain, where the first instance has
INSTANCENUMBER = 0;

57

The set of all the records representing the tasks is assumed to a bE vector

named TASK with length (TASKLENGTH) defined by the sum of all the

T(i).NUMBEROFINSTANCES.

The adjacency matrix for the tasks is a TASKLENGTH x TASKLENGTH square

matrix. The principal diagonal of this matrix is equal to zero because no edges

from task i to task i are allowed. The elements TASK(l) and TASK(TASKLENGTH)

(they are the only instances of the dummy operators V(1) and V(N), respectively)

are dummy tasks used in the construction of the graph of constraints and the

labeling process to be explained further.

a. Algorithm for Generate Chains of Tasks

generate_chains of tasks;

[E_TASK) := (0];

T 2;

N := size(V);

for OP in 2 .. N - I loop

LAST := T(OP).NUMBEROFTASKS - 1;

for I in 0 .. LAST loop

TASK(T).OPERATORNUMBER OP;

TASK(T).INSTANCENUMBER I;

if I > 0 then

E TASK(T-I,T) := 1

else

ETASK(I,T) := 1;

end if;

if I = LAST then

E_TASK(T,TASKLENGTH) 1

end if;

T=T+ 1

end loop;

end loop;

end generatechains of tasks.

Example: A application of the algorithm above is illustrated on the

Figure 21, on page 60. This example is based on the set

defined on Figure 20, on page 59.

The data available for the set V and T is the following:

i V(i) T(i).PERIOD T(i).NUMBER OF TASKS

1 dummy 1

38

2 A 10 3
3 B 15 2
4 C 5 6
5 dummy - 1

an'~ LCM = 3 0

77 Ak C ID
A 0 :1 0

____ 0 0 0 _ _

0 0 0
3D C 0 0 0

Ad . j 3, =c- C La- c M. . x

Figure 20 Precedence Constrai~nts

b. Algorithm for interconnecting Chains of Tasks

interconnect-chains;

for I in 2 .. TASKLENGTH - 1 loop

OP :=TASK(I).OPERATORNUMBER;

INSTANCE :=TASK(I) .INSTANCENUMBER;

P1 := T(OP) PERIOD;

for J n 2 .. TASK-LENGTH- 1

0P2 :=TASK (J) .OPERATORNUMBER;

59

13

GRAPH OF CONSTRAINTS

TASK OP IF5TANCE
2. --

2 1 0
3 1 1
4 1 2
6 2 0
6 2

7 3 0
B 3 1

9 3 2
10 3 3

±2 3 5

14 --

TASKS DESCRIPTION

2 1 3 1 4 1 5 1 6 I7 18 19 1 LOII I2 I 3 114
0 1 a 0 1 0 1 0 0 00 0 1 0

2 0 0 1 0 0 0 0 0 00 0 0 0 0
3 0 a 0 1 0 0 0 0 0 0 0 0 0

-a 0 0 0 0 0 0 0 0 0 0 0 0 1
5 0 0 0 0 1 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 a
7 o o o o b 0 0 I 00 0 0 0 0
a -0 a 0 0 0 0 0 0 1 a 0 0 0 0

S0 0 0 0 0 a 0 0 0 1 0 0 0 0
10 a 0 0 0 0 0 0 0 00 1 0 0 0
II 0 0 0 0 0 0 0 0 0 0 1 0 0
12 0 0 00 0 0 0 0 0 0 0 0 0 1113 6lO ob o o a a o-76-- -6 o b o
1'2 0 0 0 a 0 1h~ a 0 0 0 0j

Figure 21 Chains of Tasks

60

P2 := T(OP2).PERIOD;

INSTANCE2 := TASK(J).INSTANCENUMBER;

if OP <> OP2 then

if PI*INSTANCE = P2*INSTANCE2 then

if E(OP,OP2) = 1 then

E_TASK(I,J) := 1;

end if;

end if;

end loop;

end loop;

end interconnect-chains.

Example of this algorithm is shown in Figure 22, on page 62. The

number outside the nodes represents the earliest start of the associated task.

4. ordering the Tasks of the Graph of Constraints

The graph of constraints obtained in the subsection 3 has all the data

necessary in order to be utilized by the job modular decomposition but not for

the enumeration techniques.

The enumeration techniques requires that if i is predecessor of j

(ETASK(i,j) = 1), then the integers associated with them must obey the relation

n(i) < n(j) . To ensure that the graph of constraints obeys this relation we must

renumber the tasks. This is done by applying a topological sort to the graph of

constraints, see [Ref. O'He88].

a. Algorithm to Reorder the Tasks

reorder-tasks;

NEWORDER := (0];

NEWORDER(1) 1;

NEXT LEVEL 1 1;

61

0 10 20

00 1O5

Oil 5 10 15 20 2

GRAPH OF CONSTRAINTS

2 I 13 14 5 16 1i7 1 8 1 9 l1 i 1 12 11 I
-1 0 1 0 0 1 0 1 0 0 0 0 0 1 0
-2 o o o I oo 7 o o o o o o
3 0 0 0 1 0 0 0 0 1 0 0 0 0 0

4 o o o O 0 0 0 0 0 0 O 0 0
5 a o o o o I o 0 0 0 0 0 1 0
6 o o o o o o o o 0 o o 1 0 o
7 o 0 o o o o o I o o o o I o
8 0 0 0 0 0 0 0 0 i 0 0 0 0 0
9 o o o o o o o o o 1 0 0 a 0
10 0 0 0 0 0 0 0 0 0 0 1 0 0 0

II 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 1
13 0 0 0 0 0 0 0 0 0 0 0 0 0 1
14 a 0 0 0 0 0 0 0 0 0 0 0 __0

nirFn(Iwv nMTPTY
Figure 22 Giaph of CofisLLainiLs

62

NEW NUMBER := 2;

while GRAPHOFCONSTRAINTS <> () loop

remove all nodes of NEXTLEVEL and all the edges originated in

them from the GRAPHOF CONSTRAINTS;

generate set NEXTLEVEL with all nodes without any incomming

edges;

NEXTLEVELl := NEXTLEVEL;

while NEXTLEVEL1 <> () loop

pickup one element from NEXTLEVELl it is CURRENT NODE;

set NEWORDER(CURRENTNODE) := NEWNUMBER;

remove CURRENTNODE from NEXT LEVELl;

NEWNUMBER := NEW NUMBER + 1;

end loop;

end loop;

update TASK and ETASK;

end reorder-tasks.

Figure 23, on page 64, illustrates an example of the application of

the algorithm described above.

5. Description of the Steps to Obtain the Graph of Constraints

The graph of constraints is completely defined and evaluated using the

algorithms described in the former subsections. In order to generate a DFD of

the global algorithm to generate the graph of constraints the following naming

is assumed:

" Evaluation of the GCD of the operators: definegcd,

" Evaluation of the LCM of the operators: define_1cm,

" Evaluation of the number of tasks in the graph of constraints:

define number of tasks,

63

ORAPH OF CONSTRAINTS (UNORDERED)

GRAPH OF CONSTRAINTS (ORDERED)

Figure 23 Graph of Constraints Ordered

" Generation of chains of tasks: generatechains of tasks,

" Interconnection of the chains: interconnectchains,

" Reorder the graph of constraints: reorder-tasks,

The DFD of the GRAPHCONSTRAINTS is illustrated in the Figure 24, on page

65.

C. COST FUNCTIONS

The performance objective of meeting task deadlines is one of the scheduling

criterias most frequently encountered. While meeting deadlines is only a

qualitative goal, it usually implies that time-dependent penalties are assessed

on late jobs but no benefits derive from completing tasks early.

64

V

•(HANONIC. TASK

DEFE LOK nHRYXRDER- EJASK
-LH E.TTASKS

E

TASK ETASK
TASK

T

Figure 24 1" Level DFD Graph of Constraints

1. Preliminary Definitions

Consider n tasks to be sequenced on a single processor, where each task

has the following attributes:

" MET, : task i requires MET, time units of processing,

" PERIOD,: period of the base operator for the task i,

* PHASE,: phase of the base operator for the task i,

" INSTANCE,: instance of the -%sk i,

" EARLIESTSTART,: earliest start possible for the task i,

" TIMEALLOWED,: maximum time allowed to finish the task i after the
earliest start,

" DEADLINE,: maximum completion time allowed for the task i,

" TARDINESS,: the amount of time by which i missed its deadline,

" COMPLETTON, : time when the task i is finished.

65

Another concept needed for the analysis and evaluation of the cost

functions is a sequence of tasks.

A sequence s consisting of k tasks is a function from (1,2,...,k) to the

set TASK, defined in section C, and is represented by (s(1) ,s(2), . . . , s(k)), where

s(i) is the ith task in the sequence s.

In this thesis the cost function assigns a integer value (or cost) to each

sequence. The scheduling problem on a set TASK of tasks with cost function f is

to find a permutation of TASK contained in a predefined set of feasible

permutations F that minimizes f. In our case the feasible set F is defined by

the graph of constraints, and the evaluation of this set will be explained in

the next sections of this chapter.

The attributes of the tasks, in each feasible sequence being evaluated obey

the following equations:

" EARLIESTSTART = max(PHASE, + PERIOD, * INSTANCE,, COMPLETION,.,), where
COMPLETION0 is defined as zero,

" COMPLETION, = EARLIEST START, + MET,,

" DEADLINE, = PHASE, + PERIOD, * INSTANCE, + TIMEALLOWED,

" TARDINESS = COMPLETION, - DEADLINE,.

2. Applicable Cost Functions

In the analysis of the set TASK of tasks two cost functions are applicable:

" Total modified Tardiness (Ts) : for any sequence s of tasks we define T'
= T',, + max (TARDINESS 1 , 0), T = 0, and T' = T',, where n is the total
number of tasks in the sequence s [Ref Ste82 : p. 24-27);

" Maximum Tardiness (T3') : for any sequence s of tasks we define T', =

max(max(TARDINESS,),0), for all s(i) in the sequence s.

Both cost functions above have the recursion property, as defined in (Ref

SS86 : pp. 606-612] and (Ste82 : pp. 56-57]. The sufficient ccndition for the

cost function is to obey the definition below:

* f(S) - minig(f(s-j), S,jlj in R(S)), f({)) = 0, where R(S) (jlj -n S
and j has no descendats in S), and g can be any function.

66

For the case of the algorithm using the enumeration techniques the

recursion property is the only condition required for the cost function.

In order to use the job modular decomposition the cost function must

satisfy the job modular property, introduced in Chapter II . [Ref. SS86 : pp. 606-

612].

A more rigorous definition of the job modular property needs the

introduction of a new definition: the job module. The definition of job module

is given below:

Let P1 = (J,,R1) be a poset of P=(J,R), where: J is the set of tasks in
the set P, and R is the set of precedence constraints in the set P; J:
is the set of tasks in the poset P', R' is the set of precedence
constraints among the tasks of P'; J' is a subet of J and R' = {(i, j) in
R : i, j in J1). P' is a job module of P = (J,R) if and only if for every
task k in J\J' 7 either:

(a) k -> i for all i in J', or

(b) i -> k for all i in J3, or

(c) not (k -> i) and not (i -> k) for all i in J .

Informally the tasks in a job module are related in the same way to any

job not in the module.

Using the definition above it is possible to define the job module property

as follows:

If J' is a job module of P = (J,R), and s' is an optimal sequence for the
scheduling problem on P1 = (J', R'), then there exists an optimal sequence
s for the scheduling problem defined on P = (J,R) such that sl = slJ:,
where slJ' is the restriction of s to J1.

Informally the job module property says that every optimal sequence for

a job module is a subsequence of some optimal sequence for the entire set P.

A job module J' is said to be presequenced if an optimal sequence s' for

the subproblem defined on (J',R') has been found, and only permutations s of J

7The notation J\J' means J\J' = {J) - {J*}.

67

with siJJ are to be considered when seeking a schedule for the tasks J with

precedence relation R.

The Total Modified Tardiness function does not satisfy the job module

property, and the scheduling problem with the use of this cost function has been

proved to be NP-complete. [Ref Ste82 : pp. 23-25]

The Maximum Tardiness cost function is an open problem in the literature

searched. In order to verify if the Maximum Tardiness satisfies the job module

property we will use the work developed in [Ref. MS87 : p. 22-313. The reference

cited above states that there are three sufficient conditions for the job module

property to hold:

" Strong Adjacent Sequence Interchange property, a cost function f
possesses the strong adjacent interchange property if there exists a
(transitive) "preference" relation -:= defined on all pairs of sequences
satisfying the following property: for all sequences s,t,u, and v, s -
:= t if and only if f(u,s,t,v) <= f(u,t,s,v).

* Strong Series Network Decomposition Property, a cost function f possesses
the strong series network decomposition property if the following
conditions holds for all permutations s and t of the same set': for all
sequences u and v, f(s) <= f(t) if and only if f(u,s,v) <= f(u,t,v).

" Consistency Property, a cost function f with the preference relation -

:= possesses the consistency property if the following condition holds:
for all permutations s and t of the same set, if f(s) <= f(t) then s -
:= t.

Let us define the notation si v, where s is the sequence

(s(l),s(2), ...,s(K)), and v is the sequence (v(l),v(2), ..,v(L)), then slv is

the sequence (s(1),s(2), ... ,s(K),v(1),v(2) ,v(L)). In order to prove the three

conditions stated above for the maximum tardiness function it is necessary to

show that the following condition holds:

T. is the maximum tardiness of the sequence s, Tv is the maximum
tardiness of the sequence v, then the maximum tardiness of the sequence
shyI v"v, is T, or Tv, + COMPLETION(s(k)).

'That means is) = (t).

68

But the analysis of the sequence si Iv shows that this condition is not

satisfied, as will be demonstrated below.

In order to evaluate T, the following procedure must be used

COMPLETION' ' (s (1)) = max (0, EARLIESTSTARTV(s (1))) + MET'(s(1))

TARDINESS'(s (1)) = COMPLETION'(s (1)) - DEADLINE2 (s (1)) ,

COMPLETION'(s (2)) = max (COMPLETION'(s (1)) , EARLIESTSTARTV(s (2)))

+ MET(s (2)),

TARDINESS3 (s(2)) = COMPLETION3(s(2)) - DEADLINE'(s(2)),

COMPLETION' (s (K)) = max (COMPLETION'(s (K-1)),EARLIESTSTART (s (K))) +

MET" (s (K)),

TADINESS3(s(K)) = COMPLETION'(s(K)) - DEADLINE'(s(K)).

Then T, = max(TARDINESS5(s(i))), where s(i) in the sequence s.

In similar way the TV, is evaluated as define below:

COMPLETIONV(v(1)) = max(O,EARLIESTSTART(v(l))) + METV(v(l)),

TARDINESSv(v(l)) = COMPLETION'(v(l)) - DEADLINEV(v(l)),

COMPLETIONV(v(2)) =max (COMPLETIONv(v(l)),EARLIESTSTART'(v(2))) +

METv (v (2)),

COMPLETIONV(v(L)) = max(COMPLETIONv(v(L-1)),EARLIEST STARTV(v(L))) +

MET' (v (L))

'The notations " L ""N (s") , j , dl

9' a n....os OM P LE TIG N (s() EARLIEST START'(.5(i)) cind

TARDINESS'(s(i)), means respectively completion, earliest start, and tardiness
of the task s(i) using the sequence s.

69

TARDINESSv(vL)) = COMPLETION'(v(L)) - DEADLIN~v(v(L)).

Then T' = max (TARDINESS'(v (j))) where v (j) in the sequence v.

Applying the same procedure to the sequence s I I v we will obtain the

f ollowing:

COMPLETION" "'(s (1)) =max (0,EARLIESTSTARTsIv (s (1)) + METSIv (s (1))

TARDINESSIv (s (1)) = COMPLETIONIv (s (1)) - DEADLINE-IIv (s (1))

COMPLETIONsIIv(s(2)) =max (COMPLETION" IV (s (1) , EARLIESTSTARTIIv (s (2)) +

METIIv (s (2)),

TARDINESS-IIv (s (2)) COMPLETION" IV (s (2)) DEADLINEIv (s (2))

COMPLETION"'v(s (K)) =max (COMPLETIONs"'v(s (K-1)) , EARLIESTSTART""v(s (K))

+ MET"v (s (K)) ,

TARDINESS"'v(s(K)) =COMPLETION3"V(s(K)) - DEADLINE" (s (K))

COMPLETION"" (v (1)) max (COMPLETION"'v(s (K)) EARLIESTSTART",v(v (1)) +

METIIv (v (1))

TARDINESS,""(v (1) =COMPLETIONIIv(v(l)) - DEADLINEs''v(v(l)),

COMPLETION"'v(v(2)) =max (COMPLETION3'v(v (1) , EARLIESTSTARTIv(v (2)) +

MET3 "v (,(2)

COMPLETION"" (v (L)) max (COMPLETIONs'v(v(L-l)) , EARLIESTSTARTS Iv(v(L))

+ MET31I~V(V (L))

TARDINESS-'v(v(L)) COMPLETION" IVv(L)) DEADLINE'v (v (L))

70

Then T1v1 = max(TARDINESS1'v(s(i)), TARDINESS-"'vv(v)) , where s(i) and v(j)

in the sequence slyv.

The analysis of the definitions of the parameters utilized in the equations

above shows that deadline, maximum execution time, and earliest start of the

tasks are completely independent of the sequence or the concatenation of

sequences, that is the deadline, maximum execution time, and earliest start of

all the task in s and in v remains the same in the sequence sliv.

The com,. letion of the tasks belonging to the sequence s remain the same

in the sequence sliv, but the completion of the tasks in the sequence v do not

remain the same in the sequence sliv. The completion time of a task v(j) in the

sequence shlv is always equal or greater than the completion time of this same

task in the sequence v. The difference between the these two completion times

is not a constant for all tasks in v. As an example lets assume that the task

v(j-l), in the sequence shlv, had its comple ion time increased by an amount of

time X, then the task v(j), in the sequence sJiv, has the following possibility

of interest for our analysis"0 :

COMPLETIONv(v(j-1)) < EARLIESTSTARTv(v(j)), and

COMPLETIONv (v (j-1)) + X > EARLIESTSTARTV (v (j)), then

COMPLETION"' v(v(j)) = COMPLETIONV(v(j)) + X - COMPLETIONv(v(j -1)).

The possibility shown does not satisfy the condition that the tardiness

of the tasks in v are modified by a constant and invalidates our basic premise

to try the proof that the maximum tardiness function holds the three sufficient

conditions.

As defined in (Ref. MS87 : pp. 22-31] these conditions are sufficient, but

not necessary then we can not prove that the maximum tardiness has not the job

2There are more possibilities, but four of them are unfeasible, and the
other four possibilities satisty COMPLETION' '(v())) = COMPLETION'(v ()) +
constant.

71

module property. In order to prove that the maximum tardiness does not have the

job module property we need to reduce the whole problem to any know N-complete

problem (as was done in the case of the Total Weighted Tardiness in the [Ref.

LR78 : pp. 23-34]).

The maximum tardiness cost function satisfies the adjacent pairwise job

interchange property defined in [Ref. Smi56] for some cases analized. The

pairwise interchange property says that if two tasks are not in the preference

order they may be changed without affecting the cost function, it is orly

affected when we interchange tasks that are in the preference order.

The reduction proposed above is out of the scope of this thesis, and will

be not done. The question of whether the maximum tardiness cost function has the

job module property is left open.

3. Selected Cost Function

The analysis of the two cost functions available for our scheduling

problems reveals to us the following facts:

" both cost functions are applicable to the evaluation of the enumeration
techniques,

" the total modified tardiness is not applicable to the job modular
decomposition,

" the maximum tardiness is an open question with concerns its application
to the job modular decomposition,

" the maximum tardiness cost function locates the task with the maximum
tardiness,

" the total modified tardiness cost function furnish the total tardiness

of the system.

In our opinion the best option is to select the maximum tardiness, because

we have immediate access to the task with maximum tardiness, and also because

we can not discard the possibility that this cost function may apply to the job

modular decomposition.

72

Our approach, based on the data available, will be to develop with details

the enumeration techniques algorithm to find an optimal algorithm for the

scheduling problem, and j.ist to develop the basic guidelines foL the

imlementation of the algorithm for the scheduling problem using the job modular

decomposition.

D. THE ENUMERATION TECHNIQUES OPTIMAL SCHEDULING ALGORITHM

Two new concepts are necessary now, we define a sequence as a legal if it

satifies the precedence constraints represented by 'he graph of constraints, and

as a feasible if and only if it satisfies simultaneously the precedence

constraints represented by tie graph of constraints and the timing constraints.

The development of the optimal scheduling algorithm is based on the

enumeration of all the legal sequences of the tasks in the graph of constraints.

The enumeration of all the legal sequences may be explicit or implicit.

In the first case all the legal squences are defined before we verify if any

of them is feasible. In this approach the number of legal sequences can be very

large and we may not be able to afford to store them all. The advantage is that

we may observe the behavior of the cost function for eazh legal sequence, as well

as the relations among the tasks. This fact can be useful in future work bout

how to obtain a feasible sequence for an unfeasible system, doing the minimum

of modifications on the system.

-he implict appr-ach generates one legal sequence at time and verifies if it

is feasible, when a feasible sequence is find or all the legal sequences had been

generated the proccess is halted. The only sequence that must be stored is the

current sequence. The advantages of this approach are the economy of storage

space and the possibility to apply a dynamic programming method to the evaluation

of the cost function. This method does not allow a deep analysis of possible

mod, fications .. f th. .ys.lc does tha-;e a feasible solution.

73

__

In this work we introduce both approaches.

1. Explicit Enimeration

The explicit enumeration is obtained using the maximum legal sequence in

the lexicographic order. In order to obtain the maximum lexicographic order

legal sequence we mapped the graph of constraints into the natural numbers in

the section C of this chapter.

In this thesis we use the topological sort described in [Ref Mar88],

modified in order to obtain the maximum lexicographic order legal sequence.

The steps necessary to obtain the the optimal enumeration scheduling

aigorithn, in this approach, are:

" Obtain the ancestors and descendants of each task,

• Obtain the maximum lexicographic order legal sequence,

" Generate all the possible legal sequences,

" Apply the cost function to each legal sequence generated, until one of
them is feasible (optimal).

We define, in this work, the set of successors of a task all the tasks

that obey the relation i -> j. The definition of set of pred(essors of a task

i is the set of all the tasks j such that j -> i.

Another definition necessary is the concept of ancestor and descendant of

a task. We define as ancestor of a task k all the tasks i, j, ... such that

exists a precedence relation that obeys the following condition: i -> -> ... -

> k. More than one chain may contains ancestors of a task k. The defin3.tion of

descendants is the reverse of the definition of ancestors, that is: in the scheme

described before j, ..., k are descendants of the task i; the same observation

about the chains applies to the case of the descendants.

74

a. Ancestors and Descendants

The generation of the ancestors and descendants of each task is

constructed upon the predecessors and successors of each task.

By the construction of the graph of constraints the following sets of

ancestors and descendants are already defined:

" the set of the ancestors of TASK(1) is the empty set, and the set
of ancestors of the TASK(TASKLENGTH) is the set
TASK\TASK(TASKLENGTH),

" the set of the descendants of TASK(l) is the set TASK\TASK(I), and

the set of descendants of the TASK(TASKLENGTH) is the empty set.

We selected as structure to hold the set of descendants and

antecessors of each task two sets (ANCESTORS(I) and DESCENDANTS(I)).

We describe first the construction of the set ANCESTORS. Assume that

we are evaluating the antecessors of the task i then we begin by including in

the set ANTECESSORS(i) all the predecessors of the task i, after this we include

in this list all the ancestors of all the predecessors of the task i. The

construction of the DESCENDANTS of the task i is done in a similar fashion, we

start inc;luding in the set DESCENDANTS(i) all the successors of the node i, after

it is done we include in the set all the descendants of all the successors of

the task i.

The description of these algorithms is available below. Figure 25, on

page 76, illustrates an example of the application of the algorithm to find

sucessors and predecessors. Figure 26, on page 78, illustrates the application

of the algo ithm to find ancestors and descendants.

al. Algorithm for Sucessors and Predecessors

findsucessors predecessors;

for I in 1 .. TASKLENG'2H loop

SUCESSORS(I) := (};

PREDECESSORS(I) : (};

75

for J in 1 .. TASKLENGTH loop

if ETASK(I,J) = 1 then include J in SUCESSORS(I)

end if;

end loop;

for J in 1 .. TASKLENGTH loop

if ETASK (J, I) = 1 then include J in PREDECESSORS (I);

end if;

end loop;

end loop;

end find suce ssors predecessors.

CORAPH Or O SRAN'

TA ~ tC E50 7 S ~ED C :I50~

4 (7 C :I
5 (S (~

9 (8 C3 4)

Figure 25 Sucessors and Predecessors

76

a2. Algorithm for Ancestors and Descendants

find-ancestors descendants;

for I in 1 .. TASKLENGTH loop

ANCESTORS(I) := PREDECESSORS(I);

DESCENDANTS(I) := SUCESSORS(I);

end loop;

for I in 1 .. TASKLENGTH loop

for P in PREDECESSORS(I) loop

ANCESTORS(I) := ANCESTORS(I) U ANCESTORS(P);

end loop;

end loop;

for I in reverse 1 .. TASKLENGTH loop

for S in SUCESSORS(I) loop

DESCENDANTS(I) := DESCENDANTS(I) U DESCENDANTS(S);

end loop;

end loop;

end find ancestors descendants.

b. Maximum Lexicographic Order Legal Sequence

As said before the construction of the maximum lexicographic sequence

is done using a modified topological sort algorithm, the description of the

algorithm is furnished below, and the result obtained using the graph of

constraints shown in Figure 25, on page 76, is the following:

(1,4,7,3,2,6,8,5,9).

bl. Algorithm for Maximum Lexicograhic Order Legal Sequence

remove;

g.nodes g.nodes\n;

g.edges := (Li,)) in g.edgesi i<>n and j->nj;

77

end remove;

maximum-lexicographic_sequence;

g.nodes (1, .. , TASKLENGTH);

g.edges ETASK;

while not g.nodes =)loop

n :=max~v in g.nodesiPREDECESSORS(v) =Mf;

MAXLEX SEQ :=MAXLEXSEQ 11 (v);

g remove(g,n);

end loop;

end maximum-lexicographic-sequence.

7

Cs-) CS.7.9.9)
4(1

3 (1. 7

Figure 26 Ancestors and Descendants

78

2. Implicit Enumeration

The algorithm for the implicit enumeration technique is presented in the

section D.3.b, together with the algorithm for the explicit enumeration

technique.

This approach alLows further development in order to include the evaluation

of the cost function using dynamic programming technique. This work is not

developed in this thesis. It will be necessary to evaluate the phases of the

operators during the generation of the legal sequences. Another possibility is

to include a branch and bound methodology in this approach.

The current version of this approach requires the following steps:

" obtain the predecessors of all the tasks in the graph of constraints,

" obtain a legal sequence for the graph of constraints,

" evaluate the legal sequence obtained.

3. Legal Sequences

The two methods to obtain all the legal sequences are presented above. The

implicit enumeration technique requires the use of the concept cf predecessors.

All the legal sequences are obtained from the ordered graph of constraints. The

explicit enumeration technique utilizes the concepts of ancestors and descendants

and it checks the maximum lexicographic order legal sequence and tries to find

all the legal sequences smaller than it until it to reaches the sequence (1, 2,

, TASKLENGTH). Both algorithms are described below.

a. Algorithm for Implicit Enumeration

recursive_legalsequences;

if g is empty then generate (1

else for each node n in g such that predecessor(n) = (} loop

for each sequence s in feasiblesequence(g - (n})

generate (n) ii s;

79

end loop;

end loop;

end recursivelegal_sequences.

b. Algorithm for Explicit Enumeration

sequentiallegal sequences;

current sequence := maximum lexicographic order legal sequence;

include sequence in legalsequences;

while sequence > (1,2, ..., TASKLENGTH) loop

generate the next lexicograph small legal sequence than

current sequence;

current sequence := new sequence;

include current sequence in legalsequences;

end loop;

end sequential_legal_sequences.

4. Evaluation of the Cost Function

The evaluation of the cost function for each feasible permutation is a

straight-forward application of the equations defined in section D. The only

precaution necessary is to verify if the task being analyzed is the first

instance of the corresponding operator. If it is the first instance then it is

necessary .o define the phase of the corresponding operator to be the start time

of the task under analysis.

All the legal sequences are enumerated and the cost of each legal sequence

is evaluated. The lowest cost found so far and the sequence that realizes the

lowest cost are maintained in program variables.

The process can stop as soon as a sequence with a cost less than or equal

to zero is found, since such sequence represents a feasible sequence, or :n other

words a feasible static schedule for the scheduling problem.

80

The details of the algorithm are described below.

a. Algorithm for Evaluate the Maximum Total Tardiness

evaluatesequences;

bestcost := maximuminteger;

for each legal sequence s loop

c:= cost(s);

if c < best-cost then

best-cost := cost;

best_sequence := s;

end if;

if c =< 0 then exit;

end loop;

if best-cost =< 0 then

buildschedule(best sequence);

else

error message(best_cost,best sequence);

end if;

end evaluatesequences.

5. Summary of the Optimal Enumeration Scheduling Algorithm

This algorithm guarantees that if at least one solution of the problem

under analysis exists then it will be discovered.

Two possible DFD are available for the enumeration scheduling algorithm,

depending on wich enumeration technique is selected.

The DFD of the algorithm are illustrated in Figure 27 and Figure 28, on

page 82.

81

SUCESSSE1OO - SWM!MES

sx:s rIIM[

SU tCI5Q1S

AICEST SIS LTADU
DESCEFILS1 SwILICES

IASI

DEFINE.
EIE

AEZSCRS ILLMAL.

DESCE3 A SEOUR

Figure 27 1" Level DFD Explicit Enumeration

ETAS DEIX VAUAE ES-SHEUL
ETA5)SEUEC

PREDECESSORS TS

Figure 28 1" Level DFD Implicit Enumeration

82

E. THE JOB MODULAR DECOMPOSITION ALGORITHM

As cited in the section C, we can not ensure the optimality of this algorithm,

but it has the advantage that converges to a feasible permutation mure quickly

than the enumeration algorithm, if it succeeds.

Another important aspect of this algorithm is that it uses the most recent

developments in the area of analysis of networks1 , and some of the ideas may be

of interest for the case of multiple processors.

The approach selected to introduce this algorithm is to describe the

procedures necessdry, without discussing its respective data structures or step

by step development; all the surveyed possible alternatives for each procedure

are cited and the reason why we selected a specific one is explained.

The basic steps to generate a scheduli,. algorithm by the job modular

decomposition are the following:

" generate of the graph of constraints as described in section III.B,

" obtain the tree decomposition of the graph of constraints in the
corresponding job modules,

" evaluate the possible phases of the operators,

" presequence the job modules recursively in order to obtain the global
solution for the scheduling problem, for each possible set of phases.

1. Tree Decomposition of the Graph of Constraints into Job Modules

The decomposition of the graph of constraints in a tree of job modules

requires some concepts not yet disc ussed in this thesis.

We will introduce the new concepts necessarys, as well as a deeper insight

into the basis of the job modular decomposition, and after this we will point

out where the available algorithms may be found.

"The other important area in the analysis of network is the concept of
Petri Nets introduced in Chapter II.

83

a. Additional Concepts

First we must define the concept of the transitive orientation of a

graph: in order to possesses a transitive orientation an undirected graph must

have a finite number of vertices and edges, with no edge joining a vertex to

itself and no distinct edges joining the same pair of vertices. The undirected

graph will be defined by G = (V,E), where V is the set of vertices and E is a

set of unordered pair (i,j), which represents the edges joining the vertex i to

vertex j (or vice-versa). An orientation of G is an assignment of an unique

direction i -> j or j -> i to every edge (i,j) in E. The resulting directed image

of G is denoted W where Gd = (V, Ed), and Ed is now a set of ordered pairs (i,j),

where (i,j) implies that i -> j. Transitive orientable graphs have the property

that they admit a labeling v1, v,, . . . ,v. of their vertices under which for i <

j < k the existence of an edge joining v, to v, and one joining v, to v, implies

the existence of an edge joining v, to v,. [Ref. PLE71 : pp. 160-1751 For more

details about transitive orientation of a graph, other papers of interest "

[SF70 : pp. 648-667], (Ref. PE72 ; pp. 400-410], and [Ref. Spi85 : pp. 658-670)

A transitive orientable graph G, that has the oriented image Gd, is called a

comparability graph.

The second concept necessary is the implication classes of the

of an undirected graph. Let G (V,E) be a comparability graph and J^ be a bin,

relation defined as follows:

(i,j) 1" (i',j') , if and only if i = i' and (j, j') not in Ed, r
j = j' and (i,i') not in E.

Figure 29, on page 85, illustrates the concept of implication

class.(Ref. Go177b]

The reflexive, transitive closure J^ * of I^ is an equivalence relation

on E and hence partitions E into what is defined as the implication classes of

E. Thus edges (i,j) and (m,n) are in the same implication class if and only if

84

there exists a V^-chain of edges (i,j) = (iojo) V^ (i,,Jl) ^ ... I ^ (i, jd =

(m,n), with k >= 0. A complete definition and explanation about implication

classes as well about comparability graphs can be found in (Ref. Go177a : pp.

68-90], (Gol77b : pp. 199-208], [Ref. SF70 : pp. 648-667], (Spi85 : pp. 658-

670], and (Ref. Ste82 : pp. 166]. An algorithm to find the implication class of

an undirected graph is available in [Ref. Go177b]; the same algorithm, modified

to work on directed graph, is illustrated in (Ref. Ste82 p. 166].

UNDIRECTED GRAPH

Al = CCI.2)-
A2 = CC3.4) A2 C C4. 3
A3 - C(1.3). (1.4).(1.5)) A3" . .
A4 =CC(2.3) oCZ.4).C2.5)) A4 ((3.Z).C4.Z).CS.Z))

DIRECTED GRAPH

DI =
D2 = (C2,3).C2.4).C2.S).C2.,1)
DZ = (C40))

Figure 29 Implication Class

b. Job Modular Decomposition Basis

Let P0 =(Jo, RO) be a poset on m elements with Jo = (i 1 ,i 2, i, and

let Ph = (Jh, Rh) for h = 1, 2, ... , m be disjoint posets. The composition poset

P = (J,R) is defined by J = U'. J, and R = U'h-. R, U I (i,j): i in Jh, j in J. and

(ih, ik) in O) . For this composition we use the notation P = [P,, ... , F :1d refer

to P. as the outer factor" and P, ... , P, as the inner factors. We say tnat P is

85

the series decomposition when P, is a chain and the parallel decomposition when

P, is an antichain. In any other case, P is called an N-composition (for

"neighborhood" composition).

Each inner factor is called a module of P. P is said to be

decomposable if it contains a non-trivial module; otherwise P is indecomposdble

or prime.

The definitions above are the basis of all the job modular

decomposition. The graph cf constraints developed in this work has the property

that P0 is always a series module in relation to the inner factors. The inner

factors defined in this subsection are the basic sequences that need to be

I sequenced in order to obtain the final sequence for the global scheduling

proL m. Figure 30, on page 87, illustrates the concepts of outer and inner

factors. In Figure 30, the root of the tree decomposition is the outer factor,

and all the other nodes are the inner factors.

c. Algorithms Available for the Job Modular Decomposition

In our survey we found five basic approaches to the job modular

decomposition, which are described in the following papers: (Ref. MJ89 : pp. 1-

19], [Ref. Cun82 : pp. 214-228], [Ref. Sid8l : pp. 190-204], (Ref. MB83 : pp.

170-184], and (Ref. Ste82 : pp. 158-167]. The first reference presents the

fastest algorithm (O(n2)) but is the most difficult in terms of

implementation. All the other four algorithms have of the same time complexity

(0 (n)). We selected the last one because it is the simplest to impleme , , and

also because it is the one with the most detailed description of the data

structures necessary as well all the details of the procedure. The global

description of the algorithm, as it is described in (Ref. Ste82: pp. 181 - 183],

is reproduced:

86

PRECEDEN(CE GRAPH

S 9. Va 11

' 89 LO Ll 1Z

TREE JOB MODULE DECOHPOSITION

Figure 30 Job Modular Decomposition

"Consider the acyclic transitive digraph G = (V,A). In the k h

iteration of the algorithm we denote the current graph by Hk = (Vk,A,), and

enumerate an implication class of Hk, denoted by Bk. B, will define a

decomposition Hk = H,., [I.k] of H,. After this we find a prime decomposition of

I,,, and then carry on with the (k+l)-st iteration to decompose Hk. ,.

0. Let k = 1, B, = {}, H, = V, A, = A, FLAG = 0.

1. If FLAG = 0 select an (i, j) in A,, such that i is an immediate predecessor of

j in H,. If FLAG = 1 select an (i, j) in A. \ Bk.,, such that i is an immediate

predecessor of j in H, and let FLAG = 0. If no such (i, j) exists, check whether

any intermediate g.:aphs are still in STORAGE, if the answer is no, STOP, if the

answer is yes let H, be the last intermediate graph in STORAGE, delete this

graph from STORAGE and go to the beginning of 1.

87

2. Find the implication class Bk in Hk, defined by the arc (i, j), and let the set

of vertices spanned by Bk in Hk be Yk.

3. Y, is a job-module in Hk. Output Yk to the job-module list, along with the

composite vertex v'k, which will replace it in H,.,. If lYkl = 2 go to 6, otherwise

let Ik.1 = (Yk, Bk). If I,, contains every arc of the induced subgraph (Yk, Bk) go to

4, otherwise let FLAG = 1 and go to 6.

4. Let r = 1. Enumerate the pairs of vertices in Yk, until one pairs, say u,v in

Yk is found, such that (u,v) is a job-module in Ik.1. Output (u,v) to the job-

module List, along with the composite vertex W'kr representing it. If no such u,v

exist Ik, is indecomposable and go to 6, otherwise go to 5.

5. (u,v} defines a decomposition of the subgraph Ik.r. Let this decomposition be

Ikr = Ik.!I (Jk.r.x], where Ik,.1 = (Yko,,1,Bk.r.l), Jk.r.1 is the subgraph of I,., induced

by Sk.1. = {u, v), Yk,. 1 = Yk, \ S,,. 2 U {wk) and Bk.,. = { (a, b) I (a, b) in Bk. and a, b

not in (u,v) U ((a,w,.) Ia in Yk.,., and (a,u) in Bk..) U { (wkr,b) Ib in Y,0r., and (u,b)

in B,.r).

Continue the enumeration of the pairs of elements in Y,,r., (considering only those

which have not been looked at yet) until one pair, denoted {u,v), is found, such

that {u,v) is a job-module in 'kr.2. If no such pair can be found, the graph I ...

is indecomposable, go to 6. Otherwise let r = r + 1, output {u,v) to the job-

module list, along with the composite vertex w'ko. representing it and qo to the

beginning of step 5.

6. Let Hk., = (Vk.2,A,.2) be defined as follows:

V1.1 = Vk \ Y1 U (v',}. Ak. , = {(a,b) I (a,b) in Ak, a not in Y,, b not in Yk} U

{ (a,v'k)\a in Vk \ Yk and there is b in Y, s.t. (a,b) in Bk) U { (v'k,a) Ia in V, \

Y, and there is b in Yk s.t. (b,a) in B.}. If FLAG = 1 go to 8, otherwise replace

Hk by Hk., and go to 7.

7. Let k = k + 1, B, = {) and go to 1.

88

8. The subgraph contains an implication class of Hk other than Bk. Store the

graph Hk., in an area called STORAGE, let H,., I=, and go to 7."

The composite vertex cited in the algorithm above is just a indicator

of the outer factor (job-module), and replaces the outer factor in the new graph.

(Ref. Ste82 : pp. 175-176]. At the end of the process we will have only one

composite vertex in the resultant graph, which is the tree job modular

decomposition of the original graph.

2. Evaluation of the Possible Phases of the Operators

The sequencing of the tasks inside each inner factor (or job module) is

done using the cost function. This computation needs to have all the data

necessary (parameters for the equations defined in III.C.1) at hand, but the

phase of an operator is an important parameter that is only available after the

first instance is scheduled, then we must to find a way to solve this problem.

The best solution that we found is to apply the algorithm described in

iII.D.2.b (originally used to find maximum lexicograph order legal sequence of

the graph of constraints) to the precedence graph, and obtain what we defined

as the phase generator. With the phase generator defined we then apply the

algorithm described in III.D.3.b (originally defined to find all the maximum

legal sequences of the graph of constraints). This procedure furnishes all the

legal orderings for the first firing of each operator, one for each feasible

permutation of the phase generator under the restrictions of the precedence

constraints. Since the first firing of each operator defines the phase of the

operator, this solves our problem.

Thus we generate all possible phases, and pass them as a parameter to a

subprogram which does optimal sequencing. This is done repeatedly until we find

a feasible solution, keeping track of the lowest cost and best sequence as in

the enumeration algorithm of section III.D.

89

3. Presequencing the Job Modules

For each set of possible phases of the operators we must presequence the

job modules obtained in III.E.l.c.

The presequencing of the job modules must start at the leaves of the tree

decomposition. The first step is to presequence each leaf module. Intially all

of the leaves contain sequences of length one, which are already pre-sequenced.

The next step is to combine two presequenced leaves in order to obtain a

new leaf that is the union of them. The procedure that we recommend is to find

which leaf has the smallest TASK.ID, generate a new leaf that is the union of

the sequence of the leaf that has the smallest task followed by the sequence of

the other leaf. Then we apply the algorithm described in III.D.3, but only on

the elements that belong to the former leaf at ie right of the new leaf, after

all feasible permutations are obtained we apply the cost function and save the

best case. This procedure must be done recursively un 41 we have all the leaves

eliminated and reach the root. The current sequence is :he final sequence for

the scheduling problem, and the current maximum tardiness is the final result

of the scheduling problem.

F. SUMMARY

In this chapter we introduced two important algorithms

" generation of the graph of constraints,

• the optimal scheduling by enumeration techniques.

The first is a tool that allows the development of the optimal scheduling

algorithm using the enumeration techniques, and is the first algorithm that tries

to combine in just one piece information the precedence constraints and the

timing constraints. The merging of information is just partial, because only the

period of the operators is taken in account and the synchronization is

restricted.

90

The optimal static scheduling algorithm using enumeration techniques is a more

effective approach to the scheduling problem with precedence constraints and

represents an advance in the current version of the algorithms being utilizel

by the CAPS system. It can not be considered a quick algorithm, but is a reliable

algorithm in the sense that its construction is simple with respect to structures

and concepts utilized. Another important aspect of this algorithm is the

optimality guaranteed by the exhaustive analysis of all the possible feasible

permutations of the graph of constraints.

In our point of view the weakness of this algorithm is the restriction imposed

on the sporadic operators (must be converted to the equivalent periodic

operators). This reduces the set of feasible solutions of the actual problem.

Some possible ways to enlarge the set of feasible solutions to the actual problem

are addressed in the next chapter.

The other important aspect discussed in this chapter is the definition of the

basic guidelines for the utilization of the theory of job modular decomposition

in the analysis of the scheduling problem with pzecedence constraints.

During this work it was neither possible to prove the optimality of this

approach, nor its non optimality, but the data collected seems to enforce the

position that it may be used at least as one heuristic algorithm.

91

IV. ANALYSIS AND COMMENTS

The basic objective of this chapter is to evaluate some points about the

algorithms developed in the previous chapter and to discuss some modifications

to the CAPS system that may improve its range as well introduce new concepts

which may be utilized during future work on the development of new algorithms

for the scheduling problem in a single processor or in the case of

multiprocessors.

A. EVALUATION OF THE ALGORITHMS

During the design of the optimal enumeration scheduling algorithm we showed

that its is strongly based on two basic concepts:

" the graph of constraints,

" evaluation of the basic sequence.

The optimality of the algorithm is guaranteed by the theory about feasible

subsets defined in (Ref. Ste82], only under the constraints defined by the graph

of constraints. The graph of constraints represents one abstraction of the actual

problem, two major simplifications are introduced in it: the assumption that all

the operators are periodic, and a simplified scheme for synchronization among

the tasks. The analysis of how to handle the sporadic operators is on Section

IV.B.

During the definition of the criteria to be used to synchronize the operators

we made a tradeoff between how much synchronization to define a .ong the operators

and the size of the set of feasible solutions to the scheduling problem. Our

analysis of the problem showed that when the level of synchronization is

increased there is a reduction in the number of possible solutions. This fact

is a consequence of the increased number of constraints that must be satisfied.

As a middle point we adopted the criteria that the user must define operators

92

with the same (or multiples / submultiples) periods when she/he wants perfect

synchronization.

Another important decision made, for the construction of the graph of

constraints, was not to allow the existence of external inputs. This restriction

does not represent a loss of generality, it just implies that any external input

to the system must be represented as an operator in the graph of constraints.

This means that we are forcing the prototype designer to include in the system

a simulation of the producer operator that triggers the sporadic operators. The

producer operator may be simulated using the delay statement defined in Ada,

and a predefined random variable (assuming that the user knows the behavior of

the triggering operator: mean, deviation, and type of distribution). To avoid

burdening the user with extra work the reusable software database of CAPS may

include some generic modules for the producer operator. These patterns need to

leave to the user the definition of the parameters which will characterize the

desirable function distribution that best fit on the operator.

During this work we did not evaluate the time complexity or space complexity

of the algorithm. However it is not a linear function of the size of the input,

assuming as size of the input the number of operators to be scheduled. This fact

is evident for the construction of the graph of constraints, as we can see in

Figure 31, on page 94. The set of operators is the same as described in the

Figure 20, and the precedence constraints are also the same, but the periods are

different. This simple modification is enough to turns a simple scheduling

problem into another problem wiLh a greater number of constraints that must be

obeyed (in the former case we had 14 tasks to be scheduled and now we have 36

tasks that must be schedule, the harmonic block length jumped from 30 to 56),

as illustrated in the figure.

93

PERIOD = 8

PERIOD 7 A : D PERIOD =4

PRECEDENCE CONSTRAINTS

NUMBER OF TASKS = 35
HARMONIC BLOCK LENGTH - 56

GRAPH OF CONSTRAINTS

Figure 31 Influence of the Period on the Graph of Constraints and the LCM

In this work we will not define the explicit function of the time and space

complexity of the algorithm. The best evaluation that may be done now is that

the overall time complexity is defined by three major steps in the algorithm:

the interconnection of the chains of tasks, the evaluation of the maximum

lexicographic order legal sequence , and the evaluation of all the legal

sequences. The interconnections of the chains of tasks is no greater than 0(n');

the evaluation of the basic sequence is O(kn), where k is the maximum number of

task without predecessors during the topological sort; the evaluation of all the

feasible permutations of the basic sequence is O(p!) , where p is the maximum

94

difference from the sequential position to the shift to the left of all the

tasks. It is important to highlight that this worst case is not likely to occur

because it implies that all the tasks are simultaneously occupying the maximum

leftmost position. The major factors that determine the complexity of the

algorithm are: number of operators, and periods of the operators. The precedence

constraints influence the time complexity, since they determine the size of the

set of feasible solutions. It is difficult to characterize the distribution of

precedence constraints expected for practical applications.

We may have more than one feasible sequence of the set of tasks that obey the

timing constraints, but all of these solutions are equally desirable. This is

based on the fact that we have a well defined interval that will be repeated (the

harmonic block length) and the time that the critical tasks will use is always

the same in all the solutions, so that the free time available to be allocated

to the non-critical operators is the same in all the solutions.

We assumed in the development of this thesis that all the precedence

constraints furnished by the CAPS are well formed and we do not include any kind

of check on it. The reasons behind this assumption is the same employed in the

"warning" message of any compiler, because there are many possible precedence

constraints constructions that are correct in some cases and not in others. As

an example of this we may present the case when a critical operator receives data

stream from two different sources, one is another critical operator and the other

is a non-critical opeiator. If both data streams represent the same data then

this construction is valid, but if the data stream of the two operators have

different meanings, and the data stream of the non-critical operator was not

initialized (using the appropriate command of the CAPS system) then the

construction is not valid, and the user will have an error message during the

execution of the prototype.

95

The graph of constraints matrix is an upper triangular matrix. This fact was

not utilized during this thesis, but it may help to save storage space and also

may introduce some modifications in the algorithms developed in this work in

order to speed up the execution time. Our suggestion to the implementors of the

algorithm is to spend some time trying to verify the possibilities that this

property may produce.

An assumption not explained previously is that any data stream has its

associated buffer (responsible for the storage of the data stream). We assumed

that the buffer holds only the most recent version of the data stream. This

assumption, generally, will not cause problems; but there are some systems that

need to have access not only to the most recent data value but also the former

data values for analysis of correlation among these streams. One example of

system that r.ust to execute the operation described before is an integrated radar

network. For this kind of this kind of systems there are two possible solutions

that are introduced in the section IV.C.

An important aspect of the two algorithms developed is that they allow

interaction with the user without the necessity to rerun all the processes.

incremental modifications are possible if the user wants to modify any time

constraints of any operator; the only exception is the period. If the user want

to modify the period or the precedence constraints then is necessary to rerun

the complete algorithm.

One important aspect of incremental modifications is that will be necessary

to update the PSDL model of the system under analysis.

B. POSSIBLE CAPS MODIFICATIONS

The analysis in all the previous work done on the development of the CAPS

system (and the work presented here) is deterministic in the sense that if a

schedule is obtained then it is guaranteed under any load conditions of the

96

system (for the critical operators) . This property is obtained at the cost of

converting all the sporadic operators to equivalert periodic operators. This kind

of conversion imposes a strong restriction on the set of operators, if we have

a sporadic operator with a small MCP then it will be necessary to reserve too

many slots of time for this operator in the static schedule, even if this

operator is hardly triggered.

One possible alternative is to treat all the sporadic operators on a

statistical basis, as is 'one in the dynamic algorithms that work with monotonic

rates. The idea is to have a task that will handle all the sporadic operators

in a run-time basis. To obtain a reasonable result using this approach we must

know in advance the distribution of all the sporadic operators. This special task

that handles the sporadic operators will analyze each sporadic operator in the

waiting queue and verify which of them is more close to the next statically

scheluded critical operator (that is the data flow stream generated by the

sporadic operator is an input for the critical operator), then this sporadic

operator will be executed during the run time allocated to the special operator.

After the execution of this operator the special task will verify if there is

another sporadic task that must be executed (searching forward in the statically

scheduled operators). This task will be scheduled as the first operator in the

static schedule, and will have priority over the non-critical operators when

disputing an interval of time. The problems that appear with this idea are that

it works on the basis of a ratio of success, as the monotonic rate or the DS

algorithm, and it is not clear how to handle the queue of waiting sporadic tasks

(which is a FIFO queue by definition in the Ada language).

Other possible modifications to the current CAPS version is the inclusion of

half-critical operators. This type of operator may represent a non-critical

operator that futnilie data for a critical opetator. We need to nave data

97

available for the critical operator, but we do not have to update this data

frequently. The half-critical operator must be handled by both the static

scheduler and by the dynamic scheduler. In the static scheduler we ensure that

the half-critical operator appears once before the first critical operator that

needs its data stream. This will guarantee that at least once in a harmonic

length -interval of time this operator is executed. After the scheduled time of

this half-critical operator by the static schedule the dynamic scheduler will

treat this operator as any non-critical, and try to schedule it based on the free

slack time and the precedence constraints.

Both modifications suggested above represent an overhead in the Dynamic

Scheduler, consequently a careful analysis of the poss .ble improvements obtained

versus the lost of velocity of the Dynamic Scheduler must be performed.

The buffers that hold the data streams are one point that may allows some

important modifications. The main options are how to handle more than one data

element in a stream: queue, or time stamps. All the two possibilities require

a definition of the maximum number of data values allowed in each buffer. This

number may be defined using the data furnished by the user about period (or

minimum calling time) and the finish within time (or maximum response time) . The

queue option represents sequential analysis of data which probably will not

adversely affect the dynamic scheduler. The time stamp option is the one that

allows more control over the data being analyzed. This option will allow a search

of all available data values and the selection of one based on a time stamp

associated with the data (especially in a multiprocessor system when each

operator may need to process data from different time intervals), but at the same

time will need a more elaborate system to control this search, which will

represent an overhead in the system.

98

C. SOME NEW CONCEPTS

In this thesis we worked only with the case of a single processor, but many

of the embedded hard real-time are running in a multiprocessor systems (sometimes

spread over long distances and needing a network of telecommunications in order

to convey the information). In this kind of scenario a new concept of contiguity

may be useful. Contiguity is a new kind of constraint over the operators. It

requires that some operators must be executed in a same processor (this concept

is suggested in [Ref Ste82] for the case of production machines). This new set

of constraints may help to simplify the complex problem of scheduling with

multiprocessors. Based on the insights obtained through the development of this

thesis there are two possible ways to define the set of contiguity constraints:

the user may define these constraints; or the system may define them using the

job modular decomposition over the set of operators to be scheduled. The job

modular decomposition is a good tool for this work because it defines the

relationship among all the operators in the set, taking in account the precedence

constraints (that may include transmission links constraints), and partitions

the operators into modules that shares the same properties in relation to all

the other operators in the global set.

99

V. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

The goals of this effort were to demonstrate the feasibility of designing an

optimal algorithm for hard real-time constraints described in a prototyping

language, and to provide guidelines for its implementation. This thesis outlines

the tools and procedures that are required. The implementation of the procedures

defined in this work may uncover some inconsistencies and difficulties with the

design, but the global structure and logic of the algorithms have been

established and defined.

The main contributions of this work are the concepts of the graph of

constraints, the design of an optimal static scheduling algorithm, and the

application of the concept of job modular decomposition to the analysis of hard

real-time systems.

Job modular decomposition has not been proven to be an optimal algorithm for

our application but it opened new possibilities in the analysis of multiprocessor

systems, a field that until now does not have any optimal solution for the case

where the number of processors is greater than two.

During the development of this thesis the necessity of analyzing

multiprocessors solutions for hard real-time systems that are unfeasible with

a single processor became clear.

One important aspect of the single processor is its application in weapons

systems, where strong limitations in size, weight, and volume often forbid the

use of multiprocessor systems. Following this idea we may conclude that many

times even a schedule solution with a maximum tardiness greater than zero may

represent an improvement in the performance of a weapons system, as occurs with

the proportional navigation in missile system that does not guarantee the

interceptation but improves the chance of small miss distance allowing a greater

chance to destroy an enemy aircraft.

100

Our suggestions for further work in the area of scheduling algorithms are the

following:

" Implementation and analysis of performance of the optimal enumeration
scheduling algorithm,

• A deep analysis about how to handle the sporadic operators, and verify the
advantages of leaving the current deterministic behavior of the static
scheduler (using the equivalent periodic operator) in favor of using a
statistical behavior using some of the ideas introduced in the chapter IV,

" Modifications in the CAPS system to allow mul'Jiple types of buffers,
spreading in this way the systems that may be modeled,

" Refining the implicit enumeration technique by the use of the concepts of
branch and bound discussed in II.C.3.b, trying to improve the efficiency
of the algorithm,

" Start a theoretical analysis to extend the CAPS system for the case of

multiprocessors.

As a final remark of this work we emphasize that the rapid prototyping system

CAPS is not yet a final product, and that all our comments and suggestions are

applicable to the current version.

ici

LIST OF REFERENCES

1.[BFR71] Bratley, P., Florian, M., and Robillard, P.,"Scheduling with Earliest
Start and Due Date Constraints", Naval Research Logistic Quartely, 18, 4,
December 1971.

2.[BM83] Buer, H., and Mohring, R. H., "A Past Algorithm for the Decomposition
of Graphs and Posets", Mathematics Operations Research, 8, 2, May 1983.

3.[BS74] Baker, K. R., and Su, Z. S., "Sequencing with Due-Dates and Early Start
Times to Minimize Maximum Tardiness", Naval Research Logistics Quartely, 21,
1974.

4.(BSR88] Biyabani, S. R., Stankovic, J. A., and Ramamritham, K., "The
Integration of Deadline and Criticalness in Hard Real-Time Scheduling", IEEE
Transactions on Software Engineering, 1988.

5. [CL88] Chung, J. Y., anc Liu, J. W. S., "Performance Algorithms for Scheduling
Periodic Tasks to MInimize Average Error", Proccedings of the IEEE 91h Real-Time
Symposium, Alabama, December 1988.

6.[Coo71] Cook, S. A., "The Complexity of Theorem-Proving Procedures",
Proceedings of the Third Annual ACM Simposium on the Theory of Computing, Saker
Heights, Ohio, 1971.

7.(CPS85] Corneil, D. G., Perl, Y., and Stewart, L. K., "A Linear Recognition
Algorithm for Cographs", SIAM Journal Comput., 14, 4, November 1985.

8.(CR83] Coolahan, J. E., and Roussopoulos, N., "Timing Requirements for Time-
Driven Systems Using Augmented Petri Nets", IEEE Transaction on Software
Enginizering, 9,5, September 1983.

9.(CS82] Cunningham, W. H., and Siam, L., "Decomposition of Directed Graphs",
Alg. Disc. Meth., 3, 2, June 1982.

10.[Cun82] Cunningham, W. H., "Decomposition of Directed Graphs", SIAM Journal
Alg. Disc. Meth., 3, 2, June 1982.

11.(GJ78] Garey, M. R., and Johnson, D. S., "Computers and Intractibility: A
Guide to the Theory of N-Completeness", W. H. Freeman, San Francisco, 1978.

12.[Go177a) Golumbic, M. A., "Comparability Graphs and New MAtroids", Journal
of Combinatorial Theory (B), 22, 1977.

102

13.(Gol77b] Golumbic, M. A., "The Complexity of Comparability Graph Recognition
and Coloring", Computing, 18, 1977.

14.(Hor74] Horn, W. A., "Some Simple Scheduling Algorithms", Naval Research
Logistics Quartely, 21, 1974.

15. [Jan88] Janson, D. M., "A Static Scheduler for the Computer Aided prototyping
System : An Implementation Guide", M.S. thesis, Naval Postgraduate School,
Monterey, CA, September 1988.

16.[Kic88] Office of Naval Research Kickoff Workshop, "Foundations of Real-Time
Computing Research Initiative", Falls Church, Virginia, 1988.

17.(Ki189] Kilic, M., "Static Schedulers for Embedded and Hard Real-Time
Systems", M. S. thesis, Naval Postgraduate School, Monterey, CA, December 1989.

18.[Law78] Lawer, E. L., "Sequencing Jobs to Minimize Total Weighted Completion
Time Subject to Precedence Constraints", Ann. Discrete Mathematics, 2, 1978.

19.(LG88) Luqi, and Galik, D., "An Integrated Tool Environment for Embedded
Real-Time Software", Technical Report NPS52-88-008, Naval Postgraduate School,
Monterey, CA, April 1988.

20.[LK88] Luqi, and Ketabchi, M., "A Com'.uter Aided Prototyping System", IEEE
Transactions on Software Engineering, March 1988.

21.(LL72] Liu, C. L., and Laylan, J. W., "Scheduling Algorithms for Multi-
Programming in a Hard Real-Time Environment", Journal of ACM, 20, 1, January
1972.

22.[LR78] Lenstra, J. K., and Rinnooy, A. H. G. K., "Complexity of Scheduling
under Precedence Constraints", Operations Research,26, 1978.

23.[LS87] Leveson, N.G., and Stolzy, J. L., "Safety Analysis Using Petri Nets",
IEEE Transactions on Software Engineering, March 1987.

24.(LSS88] Lehoczky, J. P., Sha, L., and Stronsider, J. K., "Enhanced Aperiodic
Responsiveness in Hard Real-Time Environments", IEEE Real-time Symposium, 1987.

25.[LTJ85] Locke, C. D., Tokuda, H., and jensen, E. D., "A Time-Driven Scheduling
Model for Real-Time Operating Systems", Technical Report, Carnegie-Melloil
University, 1985.

103

26. [Luq88] Luqi, "Software Evolution Via Prototyping", Technical Report NPS52-
88-039, Naval Postgraduate School, Monterey, CA, September 1988.

27. [Luq89] Luqi, "Handling Timing Constzaints *n Rapid Prototyping", IEEE
Transactions on Software Engineering, 1989.

29. (LV88] Luqi, and Berzins, V., "Rapidly Prototyping Real-Time Systems",
Technical Report NPS52-87-005, Naval Postgraduate School, Monterey, CA, 1987.

30. (Mar88] Marlowe, L., "A Scheduler for Critical Time Constraints", M.S. thesis,
Naval Postgraduate School, Monterey, CA, September 1988.

31.(MB83] Mohring, R. H., and Buer, H., "A Fast Algorithm for the Decomposition
of Graphs and Posets", Mathematics of Operations Research, 8, 2, May 1983.

32.[MJ89] Muller, J. H., and Spirand, J., "Incremental Modular Decomposition",
Journal of ACM, 36, 1, January 1989.

33. [Mok85a] Mok, A., "A Graph-Based Computation Model for Real-Time Systems",
IEEE Proceedings of the International Conference on Parallel Processing,
Pennsylvania State University, PA, August 1985.

34.[Mok85b] Mok, A., "Modeling and Scheduling of Dataflow Real-Time Systems",
IEEE Proceedings of Real-Time Systems Symposium, San Diego, CA, December 1985.

35. [MR84] Mohring, C. L., and Radermacher, F. J., "Substitution Decomposition
for Discretes Structures and Connections with Combinatorial Optimization", Ann.
Disc. Math., 19, 1984.

36.[MS79] Monma, C. L., and Sidney, J. B., "Sequencing with Series-Parallel
Precedence Constraints", Mathematics Operations Research, 4, 1979.

37.(MS87] Monma, C. L., and Sidney, J. B., "Optimal Sequencing Via Modular
Decomposition: Characterization of Sequencing Functions", Mathematics of
Operations Research, 12, 1, February 1987.

38. [O'He88] O'Hern, J. T., "A Conceptual Design for a Static Scheduler for a
Hard Real-Time Systems", M. S. thesis, Naval Postgraduate School, Monterey, CA,
September 1988.

39. [PE72J Pneuli, A., and Even, S., "Permutation and Transitive Graphs", Journal
of ACM, 19, 3, July 1972.

104

41.[PLE71] Pneuli, A., Lempel, A., and Even, S., "Transitive Orientation of
Graphs and Identification of Permutation Graphs", Can. Journal of Mathematics,
XXIII, 1, 1971.

42.(SF70] Shevrin, L. N., and Fillipov, N. D., "Partially Ordered Sets and their
Comparability Graphs", Translation from the Sibirkii Matematicheskii Zhurnal,
11, 3, May-June 1970.

43.[Sha88] Sha, L., "The Priority Ceiling Protocol: A Method for Minimizing the
Blocking of High priority Ada Tasks", Technical Report SEI-SSR-4, Software
Engineering Institute, March 1988.

44. tSid8l] Sidney, J. B., "A Decomposition Algorithm for Sequencing with General
Precedence Constraints", Mathematics of Operations Research, 6, 2, May 1981.

45.[Smi56] Smith, W. E., "Various Optimizer for Single-Stage Production", Naval
Research Logistic Quartely, 3, 1956.

46.(Spi85] Spirand, J., "On Comparability and Permutation Graphs", SIAN Journal
Computing, 14, 3, August 1985.

47.[SRC87] Stankovic, J. A., Ramamritham, K., and Cheng, S. C., "Scheduling
Algorithms for Hard Real-Time Systems - A Brief Survey", COINS Technical Report
87-55, June, 1987.

48.[SS86] Sidney, J. B., and Steiner, G., "Optimal Sequencing By Modular
Decomposition: Polynomial Algorithms", Operations Research, 34, 4, July-August
1986.

49.[Ste82] Steiner,G., "Machine Scheduling with Precedence Constraints", Ph.D.
dissertation, University of Waterloo, Ontario, Canada, 1982.

105

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Montery, CA 93943

3. Center for Naval Analysis 1
4401 Ford Avenue
Alexandria, VA 22303-0268

4. Director of Research Administration 1
Attn: Prof. Howard
Code 012
Naval Postgraduate School
Monterey, CA 93943

5. Chairman, Code 52 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

6. Chief of Naval Research 1
800 N. Quincy Street
Arlington, Virginia 22217

7. National Science Foundation 1
Division of Computer and Computation Research
Attn: Tom Keenan
Washington, D.C. 20550

8. Naval Postgraduate School 50
Code 52Lq
Computer Science Department
Monterey, CA 93943

106

